Constructor Institute of Technology logo PRISM

Introduction

This content is automatically generated from the Isabelle theory files.

All the definitions and theorems in the paper have a corresponding theorem or definition here.

Definitions

Definitions.thy

record :: ‘a Program = State :: “‘a set” Pre :: “‘a set” post :: “‘a rel”

basic [] :: ‘a CNF ⇒ ‘a Program set

    basic p ≡ foldl (∪) ({}::’a Program set) (map (set) p)


S [] :: ‘a Program ⇒ ‘a set

    S p = State p ∪ Pre p ∪ Field (post p)


used_states [] :: ‘a Program ⇒ ‘a set

    used_states p ≡ Pre p ∪ Field (post p)


is_feasible [] :: ‘a Program ⇒ bool

    is_feasible p = (Pre p ⊆ Domain (post p))


all_feasible [] :: (‘a Program) list ⇒ bool

    all_feasible [ ] = True

    all_feasible (x # xs) = (all_feasible xs ∧ is_feasible x)


cnf_feasible [] :: ‘a CNF ⇒ bool

    cnf_feasible [ ] = True

    cnf_feasible (x # xs) = (all_feasible x ∧ cnf_feasible xs)


is_valid [] :: ‘a Program ⇒ bool

    is_valid p ≡ S p = State p


all_valid [] :: (‘a Program) list ⇒ bool

    all_valid [ ] = True

    all_valid (x#xs) = (all_valid xs ∧ is_valid x)


is_deterministic [] :: ‘a Program ⇒ bool

    is_deterministic p = is_function (post p)


is_functional [] :: ‘a Program ⇒ bool

    is_functional p ≡ ∀C⊆(S p). Image (post p) C ∩ C = {}


is_total [] :: ‘a Program ⇒ bool

    is_total p = (Pre p = S p)


restr_post [] :: ‘a Program ⇒ ‘a rel

    restr_post p = post p / Pre p


equal [=] :: ‘a Program ⇒ ‘a Program ⇒ bool

    p1 = p2 ≡ (Pre p1 = Pre p2 ∧ post p1 = post p2 ∧ S p1 = S p2)


equiv [≡] :: ‘a Program ⇒ ‘a Program ⇒ bool

    p1 ≡ p2 ≡ (Pre p1 = Pre p2 ∧ restr_post p1 = restr_post p2)


Range_p [] :: ‘a Program ⇒ ‘a set

    Range_p p = Range (post p / Pre p)


inverse [-1] :: ‘a Program ⇒ ‘a Program

    inverse p ≡ 〈State=S p, Pre=Range_p p, post=(restr_post p)⁻¹〉


extends [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    extends p2 p1 = (S p1 ⊆ S p2)


weakens [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    weakens p2 p1 = (Pre p1 ⊆ Pre p2)


strengthens [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    strengthens p2 p1 ≡ ((post p2) / Pre p2) / (Pre p1) ⊆ post p1


refines [⊑] :: ‘a Program ⇒ ‘a Program ⇒ bool

    p1 ⊑ p2 = (extends p1 p2 ∧ weakens p1 p2 ∧ strengthens p1 p2)


refines_c [⊑] :: ‘a Contracted_Program ⇒ ‘a Contracted_Program ⇒ bool

    cp2 ⊑ cp1 ≡ a_specification cp2 = a_specification cp1 ∧ a_implementation cp2 ⊑ a_implementation cp1


specialize [⊆] :: ‘a Program ⇒ ‘a Program ⇒ bool

    p1 ⊆ p2 ≡ extends p2 p1 ∧ weakens p2 p1 ∧ strengthens p1 p2


independent [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    independent p1 p2 = (Pre p1 ∩ Pre p2 = {})


implements [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    implements p2 p1 = (p2 ⊑ p1 ∧ is_feasible p2)


most_abstract_implementation [] :: ‘a Program ⇒ ‘a Contracted_Program

    most_abstract_implementation p ≡ 〈a_specification=p, a_implementation=p〉


MAI [] :: ‘a Program ⇒ ‘a Contracted_Program

    MAI ≡ most_abstract_implementation


is_correct [] :: ‘a Contracted_Program ⇒ bool

    is_correct cp = implements (a_implementation cp) (a_specification cp)


strongest_postcondition [sp] :: ‘a Program ⇒ ‘a set ⇒ ‘a rel

    p sp Pre’ ≡ post (p) / Pre’


new_behavior [] :: ‘a Program ⇒ ‘a rel ⇒ ‘a rel

    new_behavior p post’ ≡ post p - post’


weakest_precondition [wp] :: ‘a Program ⇒ ‘a rel ⇒ ‘a set

    p wp post’ ≡ Pre p - Domain (new_behavior p post’)


choice [∪] :: ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    p1 ∪ p2 = 〈State= S p1 ∪ S p2, Pre = Pre p1 ∪ Pre p2, post = restr_post p1 ∪ restr_post p2


non_empty [] :: ‘a CNF ⇒ ‘a CNF

    non_empty xs ≡ [t . t ← xs, t ≠ [ ]]


non_empty2 [] :: ‘a CNF list ⇒ ‘a CNF list

    non_empty2 xs ≡ [prog2. prog2 ← [non_empty prog. prog ← xs], prog2 ≠ [ ]]


choice_cnf [∪] :: ‘a CNF ⇒ ‘a CNF ⇒ ‘a CNF

    choice_cnf a b ≡ a @ b


composition_cnf [;] :: ‘a CNF ⇒ ‘a CNF ⇒ ‘a CNF

    composition_cnf a b ≡ [xs @ ys. xs ← a, ys ← b]


is_prime [] :: ‘a Program ⇒ bool

    is_prime p ≡ card (Pre p) = 1 ∧ card (post p) = 1 ∧ Pre p ∪ Field (post p) = State p


composition [;] :: ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    p1 ; p2 = 〈 State = S p1 ∪ S p2, Pre = Pre p1 ∩ Domain (post p1 ∖ Pre p2), post = (post p1) O (restr_post p2)〉


commute_programs1 [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    commute_programs1 p1 p2 ≡ (p1 ; p2) = (p2 ; p1)


commute_programs2 [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    commute_programs2 p1 p2 ≡ (p1 ; p2) = (p2 ; p1)


commute_programs3 [] :: ‘a Program ⇒ ‘a Program ⇒ bool

    commute_programs3 p1 p2 ≡ (p1 ; p2) ≡ (p2 ; p1)


unsafe_composition [;] :: ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    p1 ; p2 = 〈 State = S p1 ∪ S p2, Pre = Pre p1, post = (post p1) O (restr_post p2)〉


unsafe_composition2 [;p] :: ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    p1 ;p p2 = 〈 State = S p1 ∪ S p2, Pre = Pre p1 ∩ Domain (post p1 ∖ Pre p2), post = (post p1) O (post p2)〉


unsafe_composition3 [;P] :: ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    p1 ;P p2 = 〈 State = S p1 ∪ S p2, Pre = Pre p1, post = (post p1) O (post p2)〉


restrict_p [/] :: ‘a Program ⇒ ‘a set ⇒ ‘a Program

    restrict_p p C = 〈State= S p, Pre=Pre p ∩ C, post=post p / C〉


corestrict_p [∖] :: ‘a Program ⇒ ‘a set ⇒ ‘a Program

    corestrict_p p C = 〈State= S p, Pre=Pre p,
post=post p ∖ C〉


char_rel [] :: ‘a Program ⇒ ‘a rel

    char_rel p = post p / Pre p


Fail [] :: ‘a set ⇒ ‘a Program

    Fail s = 〈 State = s, Pre = {}, post = {}〉


Havoc [] :: ‘a set ⇒ ‘a Program

    Havoc s = 〈 State = s, Pre = s, post = {(x,y). x ∈ s ∧ y ∈ s}〉


    Skip s = 〈 State = s, Pre = s, post = {(x,y). x ∈ s ∧ x = y} 〉


Infeas [] :: ‘a set ⇒ ‘a Program

    Infeas s = 〈 State = s, Pre = s, post = {} 〉


generalized_non_atomic_conc [∥G] :: (‘a Program) list ⇒ ‘a Program ⇒ ‘a Program

    [ ] ∥G q = q

    (x#xs) ∥G q = ((xs ∥G q) ; x) ∪ (x ; (xs ∥G q))


if_then_else [] :: ‘a set ⇒ ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    if_then_else C p1 p2 ≡ (p1 / C) ∪ (p2 / (-C))


ITE [] :: ‘a set ⇒ ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    ITE ≡ if_then_else


if_then [] :: ‘a set ⇒ ‘a Program ⇒ ‘a Program

    if_then C p ≡ ITE C p (Skip (S p))


TRUE [] :: ‘a set ⇒ ‘a set

    TRUE s = s


FALSE [] :: ‘a set

    FALSE = {}


ID [] :: ‘a set ⇒ ‘a rel

    ID s ≡ {(a,b) . a ∈ s ∧ b ∈ s ∧ a = b}


fixed_repetition_helper [^p] :: ‘a Program ⇒ nat ⇒ ‘a Program

    fixed_repetition_helper p 0 = Skip (S p)

    fixed_repetition_helper p (i + 1) = fixed_repetition_helper p i ; p


fixed_repetition [^] :: ‘a Program ⇒ nat ⇒ ‘a Program

    p0 = Skip (S p) / (Pre p)

    pi + 1 = pi;p


Choice [⋃] :: (‘a Program) list ⇒ ‘a Program

    Choice [ ] = Fail {}

    Choice [x] = x

    Choice (x#xs) = foldl (∪) x xs


Concat [] :: (‘a Program) list ⇒ ‘a set ⇒ ‘a Program

    Concat [ ] s = (Skip s)

    Concat [x] s = x

    Concat (x#xs) s = foldl (;) x xs


Choice_set [⋃P] :: (‘a Program) set ⇒ ‘a Program

    Choice_set P ≡ Finite_Set.fold (∪) (Fail {}) P


is_minimal [] :: ‘a Program ⇒ bool

    is_minimal p ≡ (∀a b. (a,b) ∈ post p → a ∈ Pre p) ∧ is_valid p ∧ (∀ s ∈ State p. s ∈ Field (post p))


guarded_conditional [] :: (‘a set × ‘a Program) list ⇒ ‘a Program

    guarded_conditional xs = ⋃ [snd t / fst t. t ← xs]


GC [] :: (‘a set × ‘a Program) list ⇒ ‘a Program

    GC ≡ guarded_conditional


insert_all [] :: ‘a ⇒ ‘a list ⇒ ‘a list list

    insert_all x [ ] = [[x]]

    insert_all x (y#ys) = (x#y#ys) # (map (λzs. y#zs) (insert_all x ys))


permutations [] :: ‘a list ⇒ ‘a list list

    permutations [ ] = [[ ]]

    permutations (x#xs) = concat (map (insert_all x) (permutations xs))


complete_state [] :: ‘a Program list ⇒ ‘a set

    complete_state xs ≡ fold (λ p s. S p ∪ s) xs {}


n_comp [] :: ‘a Program list ⇒ ‘a Program

    n_comp [ ] = Fail {}

    n_comp (x#xs) = x ; (n_comp xs)


conc_elems [] :: ‘a Program list ⇒ ‘a Program list

    conc_elems xs ≡ [Concat t (complete_state t). t ← permutations xs]


atomic_conc [] :: ‘a Program list ⇒ ‘a Program

    atomic_conc xs ≡ ⋃ (conc_elems xs)


non_atomic_conc [∥n] :: ‘a Program list ⇒ ‘a Program ⇒ ‘a Program

    xs ∥n x ≡ ⋃ [Concat t (complete_state t). t ← insert_all x xs]


arbitrary_repetition_set [] :: ‘a Program ⇒ ‘a Program set

    arbitrary_repetition_set p ≡ {pi i . 0<i}

arbitrary_repetition [] :: ‘a Program ⇒ nat ⇒ nat ⇒ ‘a Program

    arbitrary_repetition p s 0 = (if s>0 then Fail (S p) else p0)

    arbitrary_repetition p s (f + 1) = (if s>(f + 1) then Fail (S p) else pf + 1 ∪ arbitrary_repetition p s f)


loop [] :: ‘a Program ⇒ nat ⇒ nat ⇒ ‘a Program

    loop ≡ arbitrary_repetition


until_support [] :: ‘a Program ⇒ ‘a set ⇒ ‘a Program ⇒ nat ⇒ nat ⇒ ‘a Program

    until_support a C b s f = a ; (loop (b/(-C)) s f)∖ C


until_loop [] :: ‘a Program ⇒ ‘a set ⇒ ‘a Program ⇒ nat ⇒ ‘a Program

    until_loop a C b n = a ; (loop (b/(-C)) 0 n)∖ C


is_invariant [] :: ‘a set ⇒ ‘a Program ⇒ bool

    is_invariant I p ≡ Range_p (p / I) ⊆ I


is_loop_invariant [] :: ‘a set ⇒ ‘a Program ⇒ ‘a set ⇒ ‘a Program ⇒ bool

    is_loop_invariant I a C b ≡ Range_p a ⊆ I ∧ is_invariant I (b/(-C))


markovian [] :: ‘a rel ⇒ bool

    markovian r ≡ ∀s s1 s2. ((s1, s) ∈ r) = ((s2, s) ∈ r)


is_trivial [] :: ‘a rel ⇒ ‘a ⇒ bool

    is_trivial r s ≡ ∀s1. (s, s1) ∈ r


is_irrelevant [] :: ‘a rel ⇒ ‘a ⇒ bool

    is_irrelevant r s ≡ ∀s1 s2. ((s, s1) ∈ r) = ((s, s2) ∈ r)


is_relevant [] :: ‘a rel ⇒ ‘a ⇒ bool

    is_relevant r s ≡ ¬ is_irrelevant r s


is_programming_language [] :: ‘a set ⇒ (‘a Program) set ⇒ bool

    is_programming_language s P ≡ ∀p ∈ P. is_feasible p ∧ S p ⊆ s


occurs [] :: ‘a ⇒ ‘a list ⇒ nat

    occurs _ [ ] = 0

    occurs x (y # ys) = (if x = y then 1 else 0) + occurs x ys


inter [∩] :: ‘a Program ⇒ ‘a Program ⇒ ‘a Program

    p ∩ q ≡ 〈State=S p ∩ S q,Pre=Pre p ∩ Pre q,post=post p ∩ post q〉


set_to_list [] :: ‘a set ⇒ ‘a list

    set_to_list s = (if finite s then SOME l. set l = s ∧ distinct l else [ ])


is_atomic [] :: ‘a Program ⇒ bool

    is_atomic p ≡ S p = State p ∧ card (post p) = 1 ∧ card (Pre p) = 1 ∧ State p = (Pre p) ∪ (Field (post p)) ∧ (card (post p) = 1 ∧ card (Pre p) = 1 → fst (THE x. x ∈ post p) = (THE x. x ∈ Pre p))


get_atomic [] :: ‘a Program ⇒ (‘a Program) set

    get_atomic p = {〈State={a,b}, Pre={a}, post={(a, b)} 〉 a b . (a,b) ∈ post p ∧ a ∈ Pre p}

evaluate [] :: ‘a CNF ⇒ ‘a set ⇒ ‘a Program

    evaluate p s ≡ ⋃ (map (λxs. Concat xs s) p)


interleave [⫴] :: ‘a list ⇒ ‘a list ⇒ ‘a list list

    [ ] ⫴ ys = [ys]

    (xs) ⫴ [ ] = [xs]

    (x#xs) ⫴ (y#ys) = map ((#) x) (xs ⫴ (y#ys)) @ map ((#) y) ((x#xs) ⫴ ys)


cnf_concurrency [∥] :: ‘a CNF ⇒ ‘a CNF ⇒ ‘a CNF

    cnf_concurrency xs ys = concat [path_m ⫴ path_n. path_m ← xs, path_n ← ys]


is_rounded [] :: ‘a Program ⇒ bool

    is_rounded p ≡ Domain (post p) ⊆ Pre p


is_exact [] :: ‘a Program ⇒ bool

    is_exact p ≡ is_rounded p ∧ is_feasible p


feasible_version [] :: ‘a Program ⇒ ‘a Program

    feasible_version p ≡ 〈State = S p, Pre = Pre p ∩ Domain (post p), post = post p〉


rounded_version [] :: ‘a Program ⇒ ‘a Program

    rounded_version p ≡ 〈State = S p, Pre = Pre p , post = post p / Pre p〉


exact_version [] :: ‘a Program ⇒ ‘a Program

    exact_version p ≡ 〈State = S p, Pre = Pre p ∩ Domain (post p) , post = post p / Pre p〉


civilized_n [] :: ‘a Program ⇒ ‘a Program set ⇒ nat ⇒ bool

    civilized_n x B 0 = (((x ∈ B) ∨ x = Fail {} ∨ x = Skip (complete_state (set_to_list B))) ∧ finite B)

    civilized_n x B (n + 1) = (((∃a b. civilized_n a B n ∧ civilized_n b B n ∧ (a ; b = x ∨ a ∪ b = x)) ∧ finite B) ∨ civilized_n x B n)


civilized [] :: ‘a Program ⇒ ‘a Program set ⇒ bool

    civilized x B ≡ (∃n. civilized_n x B n)


equal_cnf [] :: ‘a CNF ⇒ ‘a CNF ⇒ bool

    equal_cnf a b ≡ (set a = set b) ∧ (size a = 1) = (size b = 1)


restrict_path [] :: ‘a Program list ⇒ ‘a set ⇒ ‘a Program list

    restrict_path [ ] C = [ ]

    restrict_path (x#xs) C = (x / C)#xs


restriction_cnf [/] :: ‘a CNF ⇒ ‘a set ⇒ ‘a CNF

    restriction_cnf p C ≡ [restrict_path path_p C. path_p ← p]


corestrict_path [] :: ‘a Program list ⇒ ‘a set ⇒ ‘a Program list

    corestrict_path [ ] C = [ ]

    corestrict_path (xs@[x]) C = xs@[x ∖ C]


corestriction_cnf [∖] :: ‘a CNF ⇒ ‘a set ⇒ ‘a CNF

    corestriction_cnf p C ≡ [corestrict_path path_p C. path_p ← p]


complete_cnf_state [] :: ‘a CNF ⇒ ‘a set

    complete_cnf_state p ≡ ⋃ {complete_state tr tr. tr ∈ set p }

normal_of [] :: ‘a CNF ⇒ ‘a Program set ⇒ bool

    normal_of p xs ≡ (basic p ⊆ (xs ∪ {Fail {}, Skip (complete_state (set_to_list xs))})) ∧ finite xs


feas_of [] :: ‘a Program ⇒ ‘a Program

    feas_of p ≡ 〈State=S p, Pre=Pre p ∩ Domain (post p), post=post p〉


set_to_list_r [] :: ‘a set ⇒ ‘a list

    set_to_list_r s = (SOME l. set l = s)


factorial [] :: nat ⇒ nat

    factorial 0 = 1

    factorial (n + 1) = (n + 1) * factorial n


sum [] :: nat list ⇒ nat

    sum [ ] = 0

    sum (x#xs) = x + sum xs


nmb_interleavings_pre [] :: nat ⇒ nat ⇒ nat

    nmb_interleavings_pre x y ≡ factorial (x + y) div (factorial x * factorial y)


nmb_interleavings [] :: ‘a list ⇒ ‘a list ⇒ nat

    nmb_interleavings xs ys ≡ nmb_interleavings_pre (size xs) (size ys)


list_equiv [] :: ‘a Program list ⇒ ‘a Program list ⇒ bool

    list_equiv [ ] [ ] = True

    list_equiv (x#xs) (y#ys) = ((x ≡ y) ∧ list_equiv xs ys)

    list_equiv _ _ = False


cnf_size [] :: ‘a CNF ⇒ nat

    cnf_size [ ] = 0

    cnf_size (x#xs) = length x + cnf_size xs + 1


equiv_list [] :: ‘a Program list ⇒ ‘a Program list ⇒ bool

    equiv_list [ ] [ ] = True

    equiv_list (x#xs) [ ] = False

    equiv_list [ ] (y#ys) = False

    equiv_list (x#xs) (y#ys) = (x ≡ y ∧ equiv_list xs ys)


cnf_concurrency2 [] :: ‘a CNF ⇒ ‘a CNF ⇒ ‘a set ⇒ ‘a Program

    cnf_concurrency2 [ ] ys C = Fail {}

    cnf_concurrency2 xs [ ] C = Fail {}

    cnf_concurrency2 (x#xs) (y#ys) C = (case (xs , ys) of ([ ], [ ]) ⇒ (case (x, y) of ([ ], [ ]) ⇒ Skip C | ([a], [b]) ⇒ a;b ∪ b;a | ([ ], bs) ⇒ evaluate [bs] C | (as, [ ]) ⇒ evaluate [as] C | (a#as, b#bs) ⇒ a; (cnf_concurrency2 [as] [b#bs] C) ∪ b; (cnf_concurrency2 [a#as] [bs] C)) | (f#fs, [ ]) ⇒ cnf_concurrency2 [x] [y] C ∪ cnf_concurrency2 (f#fs) [y] C | ([ ], g#gs) ⇒ cnf_concurrency2 [x] [y] C ∪ cnf_concurrency2 [x] (g#gs) C | (f#fs, g#gs) ⇒ cnf_concurrency2 [x] (y#g#gs) C ∪ cnf_concurrency2 (f#fs) (y#g#gs) C )


Relation_operations.thy

restrict_r [/] :: ‘a rel ⇒ ‘a set ⇒ ‘a rel

    restrict_r R S = {r ∈ R. fst r ∈ S}


inv_restrict_r [/-] :: ‘a rel ⇒ ‘a set ⇒ ‘a rel

    inv_restrict_r R S = {r ∈ R. fst r ∉ S}


corestrict_r [∖] :: ‘a rel ⇒ ‘a set ⇒ ‘a rel

    corestrict_r R S = {r ∈ R. snd r ∈ S}


inv_corestrict_r [∖-] :: ‘a rel ⇒ ‘a set ⇒ ‘a rel

    inv_corestrict_r R S = {r ∈ R. snd r ∉ S}


is_function [] :: ‘a rel ⇒ bool

    is_function R = (∀r1 ∈ R.∀r2∈R. fst r1 = fst r2 → snd r1 = snd r2)


Theorems and Lemmas

PRISM.thy

cond_for_commutative_1

    Range_p p1 ∩ Pre p2 = {} ⟹ Range_p p2 ∩ Pre p1 = {} ⟹ commute_programs3 p1 p2


distinct_state_range_dist_from_pre

    used_states p1used_states p2 = {} ⟹ Range_p p1 ∩ Pre p2 = {} ∧ Range_p p2 ∩ Pre p1 = {}


    used_states p1used_states p2 = {} ⟹ commute_programs1 p1 p2


    x ; until_loop a C b n until_loop (x ; a) C b n


    p ; q p ; (q / (Range_p p))


T_03_Basic_programs.thy

special_empty1

    Skip {} = Fail {}


special_empty2

    Havoc {} = Fail {}


special_empty3

    Havoc {} = Infeas {}


    Havoc C = 〈State=C, Pre=TRUE C, post=TRUE C 〉


    Skip C = 〈State=C, Pre=TRUE C, post=ID C〉


    Fail C = 〈State=C, Pre=FALSE, post=FALSE〉


    Infeas C = 〈State=C, Pre=TRUE C, post=FALSE〉


special_refine1

    Infeas C Skip C


special_refine2

    Skip C Havoc C


special_refine3

    Havoc C Fail C


special_refine4

    Infeas C Fail C


special_specialize1

    Fail C Infeas C


special_specialize2

    Infeas C Skip C


special_specialize3

    Skip C Havoc C


    C ⊆ D ⟹ Fail D Fail C


    C ⊆ D ⟹ Fail C Fail D


    C ⊆ D ⟹ Infeas D Infeas C


    C ⊆ D ⟹ Infeas C Infeas D


    C ⊆ D ⟹ Skip D Skip C


    C ⊆ D ⟹ Skip C Skip D


    C ⊆ D ⟹ Havoc C Havoc D


    C ⊆ D ⟹ Havoc D Havoc C


    C ⊆ D ⟹ Havoc C Havoc D


Characteristic_relation.thy

char_rel_is_unique_in_equality_1

    p1 = p2char_rel p1 = char_rel p2


equal_charrel1

    p1 = p2char_rel p1 = char_rel p2


equiv_charrel1

    p1 p2char_rel p1 = char_rel p2


char_rel_is_unique_in_equality_2

    all_feasible [p1, p2] ⟹ (char_rel p1 = char_rel p2) ⟹ (p1 = p2)


char_rel_is_unique_in_equal_2

    all_feasible [p1, p2] ⟹ (char_rel p1 = char_rel p2) ⟹ (p1 = p2)


equiv_charrel2

    all_feasible [p1, p2] ⟹ (char_rel p1 = char_rel p2) = (p1 p2)


char_rel_choice

    char_rel (p1 p2) = char_rel p1char_rel p2


char_rel_composition

    char_rel (p1 ; p2) = char_rel p1 O char_rel p2


char_rel_restriction

    char_rel (p / C) = char_rel p / C


char_rel_corestriction

    char_rel (p C) = char_rel p C


char_rel_strengthens

    strengthens p1 p2char_rel p1 / Domain (char_rel p2) ⊆ char_rel p2


char_rel_weakens

    is_feasible p1weakens p1 p2 ⟹ Domain (char_rel p2) ⊆ Domain (char_rel p1)


char_rel_prop1

    p q ⟹ char_rel p / (Domain (char_rel q)) ⊆ char_rel q


charrel_strengthen

    all_feasible [p, q] ⟹ char_rel p / (Domain (char_rel q)) ⊆ char_rel q = strengthens p q


charrel_weaken

    all_feasible [p, q] ⟹ Domain (char_rel q) ⊆ Domain (char_rel p) = weakens p q


charrel_specialize

    q p ⟹ char_rel q < char_rel p


charrel_refine

    q p ⟹ char_rel q / (Pre p) < char_rel p


char_rel_prop6

    Field (char_rel a) ⊆ S a


Definitions.thy

    〈State={}, Pre={1::nat}, post={(1,2)}〉 〈State={}, Pre={1::nat}, post={(1,2)}〉


    Pre p ⊆ I ∧ Range_p p ⊆ I ⟹ Range_p (p / I) ⊆ I


    a (a b) a


    a (a b) a


civ_n_finite

    civilized_n p B n ⟹ finite B


Equalities.thy

equals_equiv_relation_1

    p1 = p2 ⟹ p1 = p2


equals_equiv_relation_2

    p1 = p2 ⟹ p1 p2


equals_equiv_relation_3

    p1 = p2 ⟹ p1 p2


equal_is_reflexive

    p1 = p1


equiv_is_reflexive

    p1 p1


equal_is_symetric

    p1 = p2 ⟹ p2 = p1


equiv_is_symetric

    p1 p2 ⟹ p2 p1


equal_is_transitive

    p1 = p2 ⟹ p2 = p3 ⟹ p1 = p3


equiv_is_transitive

    p1 p2 ⟹ p2 p3 ⟹ p1 p3


inverse_equality_1

    ¬ p1 p2 ⟹ ¬ p1 = p2


inverse_equality_2

    ¬ p1 p2 ⟹ ¬ p1 = p2


inverse_equality_3

    ¬ p1 = p2 ⟹ ¬ p1 = p2


empty_state_space_equal

    S a = {} ⟹ S b = {} ⟹ a = b


Feasibility.thy

equal_maintains_feasiblity

    is_feasible p1 ⟹ p1 = p2is_feasible p2


equiv_maintains_feasiblity

    is_feasible p1 ⟹ p1 p2is_feasible p2


Helper.thy

rel_id_prop

    Field a ⊆ C ⟹ a O Id_on C = a


list_comp_prop_1

    ∀p. [p i. i ← [0..((int (n + 1)))]] = [p i. i ← [0..(int n)]] @ [p ((int (n + 1)))]


orig_is_permutation_1

    List.member (insert_all x xs) (x#xs)


permutation_reflexive

    List.member (permutations xs) xs


l1

    set (insert_all x (ps)) ≠ {}


l2

    x#xs ∈ set (insert_all x xs)


l3

    xs@[x] ∈ set (insert_all x xs)


l4

    a@x#b ∈ set (insert_all x (a@b))


l5

    p ∈ set (insert_all x (a # xs)) ⟹ (hd p = x) ∨ (hd p = a)


l5_2

    p ∈ set (insert_all x (a # xs)) ⟹ (h_hd p = [x]) ∨ (h_hd p = [a])


l6

    h_hd p = [x] ⟹ hd p = x


l7

    h_tl p = x ≡ tl p = x


l8

    (h_hd p)@(h_tl p) = p


l9

    a#p ∈ set (insert_all x (a # xs)) ⟹ p ∈ set (insert_all x xs)


l10

    p ∈ set (insert_all x xs) ⟹ ∃a b. a@x#b=p


l11

    p ∈ set (insert_all x ps) ⟹ x ∈ set p


l12

    y ∈ set p ⟹ p ∈ set (insert_all x (a # ps)) ⟹ y ≠ a ⟹ p’ ∈ set (insert_all x ps) ⟹ y ∈ set p’


l13

    y ∈ set p ⟹ p ∈ set (insert_all x ps) ⟹ y ∉ set ps ⟹ y = x


permutation_symmetric_1

    List.member (permutations xs) p ⟹ List.member p y ⟹ List.member xs y


l14

    p ∈ set (insert_all x ps) ⟹ ∃a b. p = a @ x # b ∧ ps = a @ b


count_invariant

    List.member (permutations xs) p ⟹ count_list p y = count_list xs y


permutation_split

    List.member (permutations (x#xs)) xs’ ⟹ ∃a b. a@x#b = xs’


permutation_size

    List.member (permutations x1) x2 ⟹ size x2 = size x1


insert_perm_rel

    x ∈ set (insert_all a xs) ⟹ x ∈ set (permutations (a#xs))


insert_all_set_equality

    p1 ∈ set (insert_all x ps) ⟹ set p1 = insert x (set ps)


permutation_set_equality

    p1 ∈ set (permutations xs) ⟹ set xs = set p1


permutation_set_equality_2

    p1 ∈ set (permutations xs) ⟹ p2 ∈ set (permutations xs) ⟹ set p1 = set p2


permutation_split_set

    x2 ∈ set (permutations (a # x1)) ⟹ ∃y z. x2 = y @ a # z ∧ y @ z ∈ set (permutations x1)


insert_4

    (xs @ ([x] @ ys)) ∈ set (insert_all x (xs @ ys))


count_eq_member

    List.count_list p y > 0 = List.member p y


member_invariant

    p ∈ set (permutations xs) ⟹ List.member p y ⟹ List.member xs y


length_prop_1

    List.member xs x ⟹ ∃a b. a@[x]@b = xs


length_prop_2

    count_list (a @ [x] @ b) x = Suc (count_list (a @ b) x)


length_prop_3

    x1≠x2 ⟹ xs = a@[x2]@b ⟹ count_list (xs) x1 = count_list (a@b) x1


length_prop_4

    x1=x2 ⟹ xs = a@[x2]@b ⟹ count_list (xs) x1 = Suc (count_list (a@b) x1)


length_prop_5

    ∀x1. count_list (a # xs) x1 = count_list (a # xs’) x1 ⟹ ∀x1. count_list (xs) x1 = count_list (xs’) x1


length_prop_6

    ∀x1. count_list xs x1 = count_list xs’ x1 ⟹ length xs = length xs’


length_inv

    x ∈ set (permutations xs) ⟹ length x = length xs


perm_inv_2

    xb@xe ∈ set (permutations x1) ⟹ xb@a#xe ∈ set (permutations (a # x1))


singleton_permutation

    [x] ∈ set (permutations xs) ⟹ xs = [x]


count_invariant_2

    ∀y. count_list p y = count_list xs y ⟹ List.member (permutations xs) p


count_invariant_3

    x1 ∉ set (permutations x2) ⟹ ∃t. count_list x1 t ≠ count_list x2 t


permutations_set_equality

    x1 ∈ set (permutations x2) ⟹ set (permutations x1) = set (permutations x2)


perm_lemma_1

    x1 ∉ set (permutations x2) ⟹ a # x1 ∉ set (permutations (a # x2))


perm_split

    a # x1 ∈ set (permutations (y @ a # z)) ⟹ x1 ∈ set (permutations (y @ z))


perm_inv_3

    x1 ∈ set (permutations x2) ⟹ x2 ∈ set (permutations x1)


orig_is_permutation_3

    List.member (permutations x1) x2 ⟹ List.member (permutations x2) x1


complete_state_prop_1

    fold (λ p s. S p ∪ s) xs C = foldl (λ s p. S p ∪ s) C xs


complete_state_prop_2

    complete_state xs = fold (∪) (map (λp. S p) xs) {}


complete_state_prop_3

    fold (λ p s. S p ∪ s) xs C = fold (∪) (map (λp. S p) xs) C


complete_state_prop_4

    fold (∪) xs C = fold (∪) xs {} ∪ C


complete_state_prop_5

    fold (∪) (map (λp. S p) xs) C = fold (∪) (map (λp. S p) xs) {} ∪ C


complete_state_prop

    complete_state (x # xs) = complete_state xs ∪ S x


permutation_complete_state_equality

    x1 ∈ set (permutations x2) ⟹ complete_state x2 = complete_state x1


permutation_S_equiv

    x1 ∈ set (permutations x2) ⟹ fold (∪) (map (λp. S p) x1) {} ≡ fold (∪) (map (λp. S p) x2) {}


complete_state_union_1

    complete_state (a # xs) = complete_state (xs) ∪ complete_state ([a])


complete_state_union_2

    complete_state (xs) = complete_state (xs) ∪ complete_state ([ ])


complete_state_union_3

    complete_state (a @ b) = complete_state a ∪ complete_state b


perm_1

    x ∈ set (permutations xs) ⟹ a#x ∈ set (permutations (a#xs))


perm_2

    set (permutations (a#xs)) = set (permutations (xs@[a]))


perm_3

    set (permutations ([a]@st@ed)) = set (permutations (st@[a]@ed))


    x ∈ set (permutations xs) ⟹ y ∈ set (permutations ys) ⟹ x@y ∈ set (permutations (xs@ys))


elements_atomic

    x ∈ get_atomic p ⟹ is_atomic x


empty_prop1

    finite s ⟹ set_to_list s = [ ] ≡ s = {}


empty_prop2

    is_feasible p ⟹ get_atomic p = {} ⟹ Pre p = {}


finite_prop1

    finite xs ⟹ finite ys ⟹ finite {f a b a b . a ∈ xs ∧ b ∈ ys}

finite_prop2

    finite xs ⟹ finite ys ⟹ finite {f a b a b . (a, b) ∈ xs ∧ a ∉ ys}

finite_relation

    finite r ≡ finite (Field r)


decomp_program

    finite (S p) ⟹ x ∉ F ⟹ S p = insert x F ⟹ q = 〈State={s s. s ∈ State p ∧ s ∈ F}, Pre={s s. s ∈ Pre p ∧ s ∈ F}, post={(a,b) a b. a ∈ F ∧ b ∈ F ∧ (a,b) ∈ post p}〉 ⟹ r = 〈State={s s. s ∈ State p}, Pre={s s. s ∈ Pre p}, post={(a,b) a b. (a = x ∨ b = x) ∧ (a,b) ∈ post p}〉 ⟹ p q r

decomp_program2

    finite (S p) ⟹ x ∉ F ⟹ S p = insert x F ⟹ finite (S 〈State={s s. s ∈ State p ∧ s ∈ F}, Pre={s s. s ∈ Pre p ∧ s ∈ F}, post={(a,b) a b. a ∈ F ∧ b ∈ F ∧ (a,b) ∈ post p}〉)

decomp_program3

    finite (S p) ⟹ x ∉ F ⟹ S p = insert x F ⟹ finite (S 〈State={s s. s ∈ State p}, Pre={s s. s ∈ Pre p}, post={(a,b) a b. (a = x ∨ b = x) ∧ (a,b) ∈ post p}〉)

card_prop

    finite a ⟹ b ∩ c = {} ⟹ a = b ∪ c ⟹ card a = card b + card c


card_prop2

    finite b ⟹ finite c ⟹ b ∩ c = {} ⟹ a = b ∪ c ⟹ card a = card b + card c


finite_prop3

    finite x ⟹ finite {f a a . a ∈ x}

finite_prop4

    finite x ⟹ finite {f a b a b. (a, b) ∈ x}

finite_prop5

    finite (S p) ⟹ finite (get_atomic p)


atomic_idem

    is_atomic p ⟹ (get_atomic p) ∪ {p} = get_atomic (p p)


atomic_state

    is_atomic x ⟹ S x = State x


atomic_prop1

    is_atomic x ⟹ ∃a b. 〈State={a,b}, Pre={a}, post={(a,b)}〉 = x


atomic_prop2

    ∃a b. 〈State={a,b}, Pre={a}, post={(a,b)}〉 = x ⟹ is_atomic x


atomic_prop3

    ∃a b. 〈State={a,b}, Pre={a}, post={(a,b)}〉 = x ≡ is_atomic x


atomic_post

    is_atomic x ⟹ restr_post x = post x


atomic_monotone

    get_atomic p ⊆ get_atomic (p q)


atomic_split

    finite (get_atomic p) ⟹ finite (get_atomic q) ⟹ (get_atomic p) ∪ (get_atomic q) = get_atomic (p q)


    is_atomic x ⟹ (get_atomic p) ∪ {x} = get_atomic (p x)


fail_atomic

    get_atomic (Fail {}) = {}


set_list_set

    finite xs ⟹ set (set_to_list xs) = xs


set_list_prop

    finite F ⟹ xs = set_to_list (insert x F) ⟹ ∃a b. a@x#b = xs


set_to_list_distinct

    xs = set_to_list F ⟹ distinct xs


set_to_list_size

    size (set_to_list F) = card F


set_to_list_one

    set_to_list {x} = [x]


atomic_prop_1

    is_atomic x ⟹ get_atomic x = {x}


Consistent_feasible

    is_feasible (feasible_version p)


Consistent_round

    is_rounded (rounded_version p)


Consistent_exact

    is_exact (exact_version p)


Feasible_round

    is_feasible p ⟹ is_feasible (rounded_version p)


Round_feasible

    is_rounded p ⟹ is_rounded (feasible_version p)


Equiv_prog

    a b ≡ (Pre (rounded_version a) = Pre (rounded_version b) ∧ post (rounded_version a) = post (rounded_version b))


Charrel_restriction

    rounded_version (p / C) = rounded_version p / C


Charrel_choice

    rounded_version (p q) = rounded_version p rounded_version q


Charrel_composition

    rounded_version (p ; q) = rounded_version p ; rounded_version q


Charrel_corestriction

    rounded_version (p C) = rounded_version p C


Restrict_rounded

    is_rounded p ⟹ is_rounded (p / C)


Choice_rounded

    is_rounded (p q)


    is_rounded q ⟹ is_rounded p ⟹ is_rounded (p ; q)


Corestrict_feasible

    is_feasible p ⟹ is_feasible ((p / (Pre p ∩ Domain (post p C))) C)


Implementation.thy

implementation_1

    x ∈ X ⟹ x ∈ Domain (R) ⟹ x ∈ Domain (R / X)


implementation_theorem

    implements p2 p1is_feasible p1


implementation_is_reflexive

    is_feasible p1implements p1 p1


implementation_is_transitive

    implements p1 p2implements p2 p3implements p1 p3


implementation_is_antisymetric

    implements p1 p2implements p2 p1 ⟹ p1 p2


Independence.thy

independent_symetric

    independent p1 p2 = independent p2 p1


independent_weakens

    independent p1 p2 ⟹ Pre p2 ≠ {} ⟹ ¬ weakens p1 p2


independent_strengthens

    independent p1 p2strengthens p1 p2


Range_p.thy

same_range_p_3

    p1 p2Range_p p1 = Range_p p2


same_range_p_2

    a = b ⟹ Range_p a = Range_p b


range_p_explicit_1

    y ∈ Range_p a ⟹ ∃x. (x,y) ∈ post a ∧ x ∈ Pre a


range_p_explicit_2

    (x,y) ∈ post a ∧ x ∈ Pre a ⟹ y ∈ Range_p a


no_range_fail

    is_feasible p ⟹ Range_p p = {} ⟹ p Fail {}


Refinement.thy

refines_is_reflexive

    p1 p1


refines_is_transitive_e

    p1 p2 ⟹ p2 p3extends p1 p3


refines_is_transitive_w

    p1 p2 ⟹ p2 p3weakens p1 p3


refines_is_transitive_s

    p1 p2 ⟹ p2 p3strengthens p1 p3


refines_is_transitive

    p1 p2 ⟹ p2 p3 ⟹ p1 p3


refines_is_antisymetric

    p1 p2 ⟹ p2 p1 ⟹ p1 p2


refines_is_preorder

    p1 p1 ∧ (p2 p3 ∧ p3 p4 → p2 p4)


refines_is_order

    (p1 p1) ∧ (p2 p3 ∧ p3 p4 → p2 p4) ∧ (p5 p6 ∧ p6 p5 → p5 p6)


extends_is_reflexive

    extends p p


extends_is_transitive

    extends p q ⟹ extends q r ⟹ extends p r


weakens_is_reflexive

    weakens p p


weakens_is_transitive

    weakens p q ⟹ weakens q r ⟹ weakens p r


strengthens_is_reflexive

    strengthens p p


strengthens_is_transitive_1

    weakens p q ⟹ weakens q r ⟹ strengthens p q ⟹ strengthens q r ⟹ strengthens p r


strengthens_is_transitive_2

    weakens q p ⟹ weakens r q ⟹ strengthens p q ⟹ strengthens q r ⟹ strengthens p r


Relation_operations.thy

corestriction_restriction_on_relcomp

    r1 s1 O r2 = r1 O r2 / s1


Subprogram.thy

specialize_is_reflexive

    p1 p1


specialize_is_transitive

    p1 p2 ⟹ p2 p3 ⟹ p1 p3


specialize_is_antisymetric

    p1 p2 ⟹ p2 p1 ⟹ p1 p2


specialize_is_preorder

    p1 p1 ∧ (p2 p3 ∧ p3 p4 → p2 p4)


specialize_is_order

    (p1 p1) ∧ (p2 p3 ∧ p3 p4 → p2 p4) ∧ (p5 p6 ∧ p6 p5 → p5 p6)


choice_decomp_1

    a c ∧ b c ⟹ a b c


choice_decomp_2

    a b c ⟹ a c ∧ b c


choice_decomp

    a c ∧ b c ≡ a b c


specialize_equiv

    a b ⟹ a c ⟹ b d ⟹ c d


equiv_specialize_transitivity

    S a ⊆ S b ⟹ S c ⊆ S d ⟹ a b ⟹ b c ⟹ c d ⟹ a d


Validity.thy

valid_generalization

    is_valid p ⟹ prop (S p) = prop (State p)


pre_in_s

    is_valid p ⟹ Pre p ⊆ State p


post_in_s

    is_valid p ⟹ (Field (post p) ⊆ State p)


validity_inverse

    is_valid p ⟹ is_valid (p -1)


validity_composition

    all_valid [p1, p2] ⟹ is_valid (p1 ; p2)


validity_choice

    all_valid [p1, p2] ⟹ is_valid (p1 p2)


validity_restriction

    is_valid p ⟹ is_valid (p / C)


validity_corestriction

    is_valid p ⟹ is_valid (p C)


validity_equality

    is_valid p ⟹ is_valid q ⟹ p = q ⟹ p = q


Choice.thy

choice_idem_4

    Fail {} (p p) = Fail {} p


choice_idem_5

    q (p p) = q p


choice_idem_6

    (p p) q = p q


choice_equiv

    f1 p1 ⟹ f2 p2 ⟹ f1 f2 p1 p2


equality_is_maintained_by_choice

    f1 = p1 ⟹ f2 = p2 ⟹ f1 f2 = p1 p2


choice_feasible

    all_feasible [p1, p2] ⟹ is_feasible (p1 p2)


condition_for_choice_simplification

    Range_p a ∩ Pre y = {} ⟹ Range_p x ∩ Pre b = {} ⟹ a ; b x ; y (a x) ; (b y)


choice_range

    Range_p (p1 p2) = Range_p p1Range_p p2


refinement_safety_choice_e

    q1 p1 ⟹ q2 p2extends (q1 q2) (p1 p2)


refinement_safety_choice_w

    q1 p1 ⟹ q2 p2weakens (q1 q2) (p1 p2)


refinement_safety_choice_s_1

    q1 p1 ⟹ q2 p2strengthens (q1 q2) (p1 p2)


refinement_safety_choice_s_2

    strengthens q1 p2strengthens q2 p1 ⟹ q1 p1 ⟹ q2 p2strengthens (q1 q2) (p1 p2)


refinement_safety_choice

    q1 p1 ⟹ q2 p2 ⟹ (q1 q2) (p1 p2)


refinement_safety_choice

    strengthens a c ⟹ a b ⟹ (a c) (b c)


refinement_safety_choice_1

    strengthens q1 p2strengthens q2 p1 ⟹ q1 p1 ⟹ q2 p2 ⟹ (q1 q2) (p1 p2)


refinement_safety_choice_2

    independent q1 p2independent q2 p1 ⟹ q1 p1 ⟹ q2 p2 ⟹ (q1 q2) (p1 p2)


choice_safety1

    a b ⟹ a c b c


implements_safety_choice

    is_feasible c ⟹ implements a b ⟹ implements (a c) (b c)


implements_safety_choice

    strengthens a c ⟹ is_feasible c ⟹ implements a b ⟹ implements (a c) (b c)


program_is_specialize_of_choice

    p1 (p1 p2)


choice_choice_range

    Range_p p ⊆ Range_p (p q)


choice_range_p_prop_2

    x ∈ Range_p (p q) ⟹ x ∉ Range_p p ⟹ x ∈ Range_p q


choice_range_p_prop_3

    x ∉ Range_p (p q) ⟹ x ∉ Range_p p


empty_is_neutral

    S a = {} ⟹ a (b c) = b c


choice_idem_2

    a (a b) = a b


choice_suprogram_prop

    a c ⟹ b c ⟹ a b c


Composition.thy

composition_simplification_1

    p1 ; p2 = p1 Pre p2 ; p2


composition_simplification_2

    p1 ; p2 = p1 ; p2 / Pre p2


composition_equiv

    f1 p1 ⟹ f2 p2 ⟹ f1 ; f2 p1 ; p2


equality_is_maintained_by_composition

    f1 = p1 ⟹ f2 = p2 ⟹ f1 ; f2 = p1 ; p2


compose_feasible_lemma

    all_feasible [p1, p2] ⟹ Domain ((post p1) (Pre p2)) = Domain ((post p1) (Pre p2) O post p2)


compose_feasible2

    all_feasible [p1, p2] ⟹ is_feasible (p1 ; p2)


composition_removes_dead_code_1

    p / (Pre p) ; q p ; q


composition_removes_dead_code_2

    p ; q / (Pre q) p ; q


compose_feasible

    is_feasible p2is_feasible (p1 ; p2)


    p1 ; p2 〈State ={}, Pre=Pre p1 ∩ Domain (post p1 Pre p2), post=post p1; p2


range_decreases_composition

    Range_p (y ; x) ⊆ Range_p x


    p q ⟹ p ; a q ; a


composition_subsafety

    a b ⟹ a ; c b ; c


composition_subsafety2

    a b ⟹ c ; a c ; b


comp_range_p_prop

    Range_p (q) ⊆ C ⟹ Range_p (p ; q) ⊆ C


comp_range_p_prop_2

    x ∉ Range_p q ⟹ x ∉ Range_p (p ; q)


connecting_element

    (x,y) ∈ post (a ; b) ⟹ ∃z. (x,z) ∈ post a ∧ (z,y) ∈ post b ∧ z ∈ Pre b


knowing_pre_composition

    x ∈ Pre (a) ⟹ (x, y) ∈ post (a ; b) ⟹ x ∈ Pre (a ; b)


Corestriction.thy

corestrict_idem

    (p C) C = p C


corestrict_prop_1

    Range_p (p D) ⊆ D


corestrict_prop_2

    Range_p (p D) ⊆ Range_p p


corestrict_prop_

    Range_p (p D) ⊆ Range_p p ∩ D


NOT_corestricted_p_refines_p

    p C p


NOT_p_refines_corestricted_p

    p p C


corestricted_refines_unrestricted_1

    p C p


unrestricted_refines_corestricted_1

    p p C


corestricted_refines_unrestricted_2

    is_feasible p ⟹ p C p


unrestricted_refines_corestricted_2

    is_feasible p ⟹ p p C


corestrict_subprog

    p C p


unrestricted_weakens_corestricted

    weakens p (p C)


corestricted_strengthens_unrestricted

    strengthens (p C) p


corestriction_prop

    D ⊆ C ⟹ p D p C


corestriction_prop

    D ⊆ C ⟹ p C p D


corestriction_weakens_prop

    D ⊆ C ⟹ weakens (p C) (p D)


corestriction_strengthens_prop

    D ⊆ C ⟹ strengthens (p D) (p C)


corestrict_subprogorder1

    D ⊆ C ⟹ (p D) (p C)


equivalence_is_maintained_by_corestriction

    f1 p1 ⟹ (f1 C) p1 C


equality_is_maintained_by_corestriction

    f1 = p1 ⟹ (f1 C) = p1 C


corestrict_feasible

    is_feasible p ⟹ is_feasible (p C)


corestriction_subsafety

    q p ⟹ q C p C


refinement_safety_corestriction

    q p ⟹ q C p C


implements_safety_corestriction

    implements a b ⟹ implements (a C) (b C)


weakens_corestriction_1

    all_feasible [p, q] ⟹ q p ⟹ weakens (q C) (p C)


weakens_corestriction_2

    q p ⟹ weakens (p C) (q C)


strengthens_corestriction_1

    q p ⟹ strengthens (p C) (q C)


strengthens_corestriction_2

    q p ⟹ strengthens (q C) (p C)


corestrict_range_prop

    x ∈ C ⟹ x ∉ Range_p (p C) ⟹ x ∉ Range_p (p)


corestrict_range_prop_2

    is_feasible a ⟹ Range_p a ⊆ C ⟹ a C a


corestrict_range_prop_3

    Range_p(a) ∩ C = {} ⟹ a∖C Fail {}


corestrict_range_porp_4

    is_feasible p ⟹ p Range_p p p


corestrict_inter

    (p C) D = p∖ (C ∩ D)


corestrict_commute

    (p C) D = (p D) C


Inverse.thy

inverse_feasible

    is_feasible p ⟹ is_feasible (p -1)


inverse_of_inverse_is_self

    is_feasible p ⟹ p -1-1 p


pre_of_inverse

    is_deterministic (p -1) ⟹ Pre p = Pre (p ; (p -1))


pre_is_unchanged

    is_feasible p ⟹ Pre (p ; (p -1)) = Pre p


post_is_identity

    is_deterministic (p -1) ⟹ (x,y)∈ restr_post (p ; (p -1)) ⟹ x = y


post_is_identity_2

    is_deterministic (p -1) ⟹ (x,y)∈ restr_post (p ; (p -1)) ⟹ x = y


post_of_inverse

    is_feasible p ⟹ is_deterministic (p -1) ⟹ restr_post (Skip (Pre p)) = restr_post (p ; (p -1))


inverse_reverses_composition_1

    is_feasible p ⟹ is_deterministic (p -1) ⟹ Skip (Pre p) (p ; (p -1))


inverse_reverses_composition_2

    Skip (S p) (p ; (p -1))


equivalence_is_maintained_by_inverse

    f p ⟹ f -1 p -1


equality_is_maintained_by_inverse

    f = p ⟹ f -1 = p -1


refinement_safety_inverse

    S f = S g ⟹ all_feasible [f, g] ⟹ f g ⟹ (g -1) (f -1)


inverse_makes_feasible

    is_feasible (p -1)


Operation_interactions.thy

unsafe_compose_absorb

    (p1 ;p2)/C = p1/C ;p2


unsafe_compose_absorb_2

    (p1 ;p2)/C = p1/C ;p2


unsafe_compose_absorb_3

    (p1 ;p2)/C p1/C ;p2


range_p_unsafe_composition

    Range_p(a) ∩ C = {} ⟹ a ;b/(-C) a ;b


compose_absorb_1

    (p1 ; p2)/C = p1/C ; p2


compose_absorb_2

    (p1 ; p2)/C = p1/C ; p2


compose_absorb_3

    (p1 ; p2)/C p1/C ; p2


range_p_composition

    Range_p(a) ∩ C = {} ⟹ a ; b/(-C) a ; b


restrict_distrib_1

    (p1 p2)/C = (p1/C p2/C)


restrict_distrib_2

    (p1 p2)/C = (p1/C p2/C)


restrict_distrib_3

    (p1 p2)/C (p1/C p2/C)


restrict_distrib_4

    a (p1 p2)/C = a (p1/C p2/C)


restriction_absorbed_by_inverse_1

    (p -1)/C = ((p∖C) -1)


restriction_absorbed_by_inverse_2

    (p -1)/C = (p∖C) -1


restriction_absorbed_by_inverse_3

    (p -1)/C (p∖C) -1


compose_distrib1_1

    q ; (p1∪p2) = (q ; p1) (q ; p2)


compose_distrib1_2

    q ; (p1∪p2) = (q ; p1) (q ; p2)


compose_distrib1_3

    q ; (p1∪p2) (q ; p1) (q ; p2)


compose_distrib2_1

    (p1∪p2) ; q = (p1 ; q) (p2 ; q)


compose_distrib2_2

    (p1∪p2) ; q = (p1 ; q) (p2 ; q)


compose_distrib2_3

    (p1∪p2) ; q (p1 ; q) (p2 ; q)


choice_distributes_over_composition

    q∪(p1 ; p2) (q∪p1) ; (q∪p2)


corestriction_on_composition

    p1 s1 ; p2 = p1 ; p2 / s1


corestrict_compose

    (p1 ; p2) C = p1 ; (p2 C)


unsafe_gets_safe_1

    (p1 ;p2) ; p3 = (p1 ; p2) ; p3


unsafe_gets_safe_2

    (p1 ;p2) ; p3 = (p1 ; p2) ; p3


unsafe_gets_safe_3

    (p1 ;p2) ; p3 (p1 ; p2) ; p3


unsafe_gets_safe_extended

    ((p1 ;p2) ;p3) ; p4 ((p1 ; p2) ; p3) ; p4


equivalency_of_compositions_1

    (p1∖Pre p2) ;p2 = p1 ; p2


equivalency_of_compositions_2

    (p1∖Pre p2) ;p2 = p1 ; p2


equivalency_of_compositions_3

    (p1∖Pre p2) ;p2 p1 ; p2


composition_inverse_1

    (p ; q) -1 = (q -1) ; (p -1)


composition_inverse_2

    (p ; q) -1 = (q -1) ; (p -1)


composition_inverse_3

    (p ; q) -1 (q -1) ; (p -1)


choice_inverse_1

    (p q) -1 = (p -1) (q -1)


choice_inverse_2

    (p q) -1 = (p -1) (q -1)


choice_inverse_3

    (p q) -1 (p -1) (q -1)


corestriction_restriction_on_unsafe_composition_1

    p1 s1 ; p2 p1 ; p2 / s1


corestrict_gets_absorbed_by_unsafe_composition_1

    (p1 ; p2) C (p1 C) ; p2


corestrict_gets_absorbed_by_unsafe_composition_2

    (p1 ; p2) C p1 ; (p2 C)


corestriction_on_unsafe_composition

    p1 s ; p2 = p1 ; p2 / s


corestrict_unsafe_compose

    is_feasible p1 ⟹ (p1 ; p2) C p1 ; (p2 C)


corestriction_absorbed_by_inverse_1

    (p -1)∖C = ((p/C) -1)


corestriction_absorbed_by_inverse_2

    (p -1)∖C = ((p/C) -1)


corestriction_absorbed_by_inverse_3

    (p -1)∖C (p/C) -1


unsafe_composition_inverse_1

    (p ;q) -1 (q -1) ;(p -1)


corestrict_choice_1

    (p1 p2) C = (p1 C) (p2 C)


corestrict_choice_2

    (p1 p2) C = (p1 C) (p2 C)


corestrict_choice_3

    (p1 p2) C (p1 C) (p2 C)


unsafe_compose_distrib1_3_1

    q ;(p1∪p2) = (q ;p1) (q ;p2)


unsafe_compose_distrib1_3_2

    q ;(p1∪p2) = (q ;p1) (q ;p2)


unsafe_compose_distrib1_3_3

    q ;(p1∪p2) (q ;p1) (q ;p2)


unsafe_compose_distrib2_1

    (p1∪p2) ;q = (p1 ;q) (p2 ;q)


unsafe_compose_distrib2_2

    (p1∪p2) ;q = (p1 ;q) (p2 ;q)


unsafe_compose_distrib2_3

    (p1∪p2) ;q (p1 ;q) (p2 ;q)


choice_distributes_over_composition_4

    q∪(p1 ;p2) (q∪p1) ; (q∪p2)


until_simplification_1

    a ; n∖C a ; m∖C a ; (n m)∖C


until_simplification_2

    a ;n∖C a ;m∖C a ;(n m)∖C


Prime.thy

finite_Field_implies_finite_relation

    finite (Field r) ⟹ finite r


    finite (S p) ⟹ finite (Pre p)


finite_S_implies_finite_post

    finite (S p) ⟹ finite (post p)


post_cardinality_equals_P_cardinality

    P = {〈State={a,b}, Pre={a}, post={(a,b)}〉 a b. (a,b) ∈ (post p)} ⟹ card (post p) = card P

same_card_and_finite_impl_finite

    card a = card b ⟹ finite a ⟹ card a > 0 ⟹ finite b


fst_in_state

    is_feasible p ⟹ is_minimal p ⟹ P = {〈State={a,b}, Pre={a}, post={(a,b)}〉 a b. (a,b) ∈ post p} ⟹ r ∈ post p ⟹ fst r ∈ State p

snd_is_state

    is_feasible p ⟹ is_minimal p ⟹ P = {〈State={a,b}, Pre={a}, post={(a,b)}〉 a b. (a,b) ∈ post p} ⟹ r ∈ post p ⟹ snd r ∈ State p

    is_feasible p ⟹ is_minimal p ⟹ P = {〈State={a,b}, Pre={a}, post={(a,b)}〉 | a b. (a,b) ∈ post p} ⟹ s ∈ State p ⟹ ∃r ∈ post p. fst r = s ∨ snd r = s


choice_set_decomp_1

    finite F ⟹ P (insert x F) = P F x


choice_set_decomp_1

    P (insert x F) = P F x


choice_set_equality

    finite (S p) ⟹ is_feasible p ⟹ is_minimal p ⟹ P = {〈State={a,b}, Pre={a}, post={(a,b)}〉 a b. (a,b) ∈ post p} ⟹ pi ∈ P ⟹ P P = p

    finite (S p) ⟹ is_feasible p ⟹ is_minimal p ⟹ P = {〈State={a,b},Pre={a},post={(a,b)}〉 |a b . (a,b) ∈ (post p)} ⟹ pi ∈ P ⟹ is_prime pi ∧ pi p ∧ P P = p


    finite (S p) ⟹ is_feasible p ⟹ is_minimal p ⟹ ∃ P. pi ∈ P → is_prime pi ∧ pi p ∧ P P = p


Restriction.thy

restrict_prop_1

    Pre (p / D) ⊆ D


restrict_prop_2

    Pre (p / D) ⊆ Pre p


restrict_prop

    Pre (p / D) ⊆ Pre p ∩ D


restrict_idem

    (p / C) / C = p / C


restrict_inter

    (p/C1)/C2 = p/(C1 ∩ C2)


restriction_equiv

    f1 p1 ⟹ (f1 / C) p1 / C


equality_is_maintained_by_restriction

    f1 = p1 ⟹ (f1 / C) = p1 / C


restrict_feasible

    is_feasible p ⟹ is_feasible (p / C)


restrict_might_make_feasible

    C ⊆ Domain (post p) ⟹ is_feasible (p / C)


restrict_refine_1

    strengthens p (p / C)


restrict_refine_2

    strengthens (p / C) p


restrict_refine_3

    strengthens p q ⟹ strengthens (p / C) (q / C)


restrict_refine_4

    weakens p (p / C)


restrict_refine_5

    weakens p q ⟹ weakens (p / C) (q / C)


restrict_refine

    p p / C


restrict_refineorder1

    D ⊆ C ⟹ p / C p / D


restriction_refsafety

    q p ⟹ q / C p / C


restriction_subsafety

    q p ⟹ q / C p / C


restriction_refsafety2

    q p ⟹ D ⊆ C ⟹ q / C p / D


implements_safety_restriction

    implements a b ⟹ implements (a / C) (b / C)


restrict_subprogorder1

    D ⊆ C ⟹ p / D p / C


restrict_subprog

    p / C p


Unsafe_composition.thy

equivalence_is_maintained_by_unsafe_composition

    f1 p1 ⟹ f2 p2 ⟹ f1 ; f2 p1 ; p2


equality_is_maintained_by_unsafe_composition

    f1 = p1 ⟹ f2 = p2 ⟹ f1 ; f2 = p1 ; p2


unsafe_compose_feasible_1

    is_feasible (p1 ; p2) ⟹ is_feasible p1


unsafe_compose_feasible_2

    all_feasible [p1, p2] ⟹ Range_p p1 ⊆ Pre p2is_feasible (p1 ; p2)


Unsafe_composition2.thy

    Pre (p1 ;p (p2 ;p p3)) ⊆ Pre ((p1 ;p p2) ;p p3)


    Pre ((p ;p q) ;p r) = Pre (p ;p (q ;p r))


equivalence_is_maintained_by_unsafe_composition

    f1 p1 ⟹ f2 p2 ⟹ f1 ;p f2 p1 ;p p2


unsafe_compose_feasible_1

    is_feasible (p1 ;p p2) ⟹ is_feasible p1


unsafe_compose_feasible_2

    all_feasible [p1, p2] ⟹ Range_p p1 ⊆ Pre p2is_feasible (p1 ;p p2)


Unsafe_composition3.thy

equivalence_is_maintained_by_unsafe_composition

    f1 p1 ⟹ f2 p2 ⟹ f1 ;P f2 p1 ;P p2


equality_is_maintained_by_unsafe_composition

    f1 = p1 ⟹ f2 = p2 ⟹ f1 ;P f2 = p1 ;P p2


unsafe_compose_feasible_1

    is_feasible (p1 ;P p2) ⟹ is_feasible p1


unsafe_compose_feasible_2

    all_feasible [p1, p2] ⟹ Range_p p1 ⊆ Pre p2is_feasible (p1 ;P p2)


Boolean.thy

restrict_true

    p / (TRUE (S p)) = p


restrict_false

    p / (FALSE) Fail (S p)


cond_false_1

    p / FALSE Fail (S p)


corestrict_true

    is_feasible p ⟹ p (TRUE (S p)) p


corestrict_false

    p FALSE = Fail (S p)


corestrict_false

    p FALSE Infeas (Pre p)


if_true

    ITE (TRUE (S p1S p2)) p1 p2 p1


if_false1

    ITE (FALSE) p1 p2 p2


true_selects_first_program_2

    GC [(TRUE (S p1S p2), p1), (FALSE, p2)] p1


false_selects_second_program_2

    GC [(FALSE, p1), ((TRUE (S p1S p2)), p2)] p2


restrict_false2

    S p ⊆ S q ⟹ p / FALSE q = Fail {} q


implies_prop

    (C →s D) = UNIV ≡ (C ⊆ D)


and_prop

    A ⊆ X ⟹ B ⊆ X ⟹ A ∧s B = TRUE X ≡ A = X ∧ B = X


or_prop

    TRUE X ⊆ (A ∨s B) ≡ ∀x∈X. x ∈ A ∨ x ∈ B


Fail.thy

fail_is_valid

    is_valid (Fail s)


fail_is_feasible

    is_feasible (Fail s)


fail_is_total

    is_total (Fail s)


fail_is_idempondent_composition

    Fail C ; Fail C = Fail C


fail_is_idempondent_unsafe_composition

    Fail C ; Fail C = Fail C


fail_equiv

    Fail C Fail D


no_pre_is_fail

    Pre p = {} ⟹ Fail s p


NOT_fail_choice_r

    p Fail (S p) = p


fail_choice_r

    p Fail C p


NOT_fail_choice_l

    Fail (S p) p = p


fail_choice_l

    Fail C p p


fail_compose_l_2

    Fail (S p) ; p = Fail (S p)


fail_compose_l

    Fail C ; p = Fail (C ∪ S p)


fail_compose_r_2

    p ; Fail C = Fail (C ∪ S p)


fail_compose_r

    p ; Fail C Fail C


only_fail_refines_fail

    (p Fail (S p)) = (p Fail (S p))


refine_fail

    p Fail (S p)


fail_refine_self

    (Fail (S p) p) = (p Fail (S p))


fail_specialize_self

    (p Fail (S p)) = (p Fail (S p))


range_of_fail

    Range_p (Fail C) = {}


choice_fail_implication

    (a b Fail {}) = (a Fail {} ∧ b Fail {})


fail_refine

    C ⊆ S p ⟹ p Fail C


    C ⊆ S p ⟹ Fail C p


fail_specialize2

    p Fail (S p) ≡ p Fail {}


fail_refine2

    Fail (S p) p ≡ p Fail {}


compose_empty_1

    S a = {} ⟹ b ; a = Fail (S b)


compose_empty_2

    S a = {} ⟹ a ; b = Fail (S b)


fail_union_1

    C ⊆ S p ⟹ Fail C (p q) = (p q)


fail_compose

    Fail (S p) ; p = Fail (S p)


fail_union_2

    C ⊆ S a ⟹ a Fail C = a Fail {}


fail_choice_decomp

    p q Fail {} ≡ p Fail {} ∧ q Fail {}


fail_specialize

    C ⊆ S p ⟹ Fail C p


fail_specialize3

    Fail {} p


Havoc.thy

havoc_is_valid

    is_valid (Havoc s)


havoc_is_feasible

    is_feasible (Havoc s)


havoc_is_total

    is_total (Havoc s)


havoc_is_idempondent_composition

    Havoc C ; Havoc C = Havoc C


havoc_is_idempondent_unsafe_composition

    Havoc C ; Havoc C = Havoc C


havoc_choice_l

    S p ⊆ C ⟹ Havoc C p = Havoc C


havoc_choice_r

    S p ⊆ C ⟹ p Havoc C = Havoc C


havoc_pre_State

    State (p ; Havoc (S p)) = State (Havoc (S p) / Pre p)


havoc_pre_S

    S p ⊆ C ⟹ S (p ; Havoc C) = S (Havoc C / Pre p)


NOT_havoc_pre_Pre

    Pre (p ; Havoc (S p)) = Pre (Havoc (S p) / Pre p)


havoc_pre_Pre

    S p ⊆ C ⟹is_feasible p ⟹ Pre (p ; Havoc C) = Pre (Havoc C / Pre p)


NOT_havoc_pre_post_1

    post (p ; Havoc (S p)) = post (Havoc (S p) / Pre p)


NOT_havoc_pre_post_1

    is_feasible p ⟹ post (p ; Havoc (S p)) = post (Havoc (S p) / Pre p)


havoc_pre_post

    S p ⊆ C ⟹is_feasible p ⟹ restr_post (p ; Havoc C)/ Pre p = restr_post (Havoc C / Pre p)


NOT_havoc_pre

    p ; Havoc (S p) Havoc (S p) / Pre p


havoc_pre

    S p ⊆ C ⟹is_feasible p ⟹ (p ; Havoc C) Havoc C / Pre p


havoc_pre_unsafe

    S p ⊆ C ⟹ (p ; Havoc C) Havoc C / Pre p


havoc_co_restricted

    (Havoc C / D) D Havoc (C ∩ D)


havoc_from_left_S

    S p ⊆ C ⟹ is_feasible p ⟹ S (Havoc C ; p) = S(Havoc C Range_p (p))


havoc_from_left_Pre

    S p ⊆ C ⟹ is_feasible p ⟹ ¬ p Fail C ⟹ Pre (Havoc C ; p) = C


havoc_from_left_post

    S p ⊆ C ⟹ is_feasible p ⟹ post (Havoc C ; p) = post (Havoc C Range_p (p))


havoc_from_left

    S p ⊆ C ⟹ is_feasible p ⟹ ¬ p Fail C ⟹ Havoc C ; p Havoc C Range_p p


refine_havoc

    p Havoc (S p) / Pre p


specialize_havoc

    p Havoc (S p) / Pre p


refine_havoc2

    is_total p ⟹ p Havoc (S p)


specialize_havoc2

    S p ⊆ C ⟹ p Havoc (C)


Infeas.thy

infeas_is_valid

    is_valid (Infeas s)


infeas_is_feasible

    is_feasible (Infeas s)


infeas_is_total

    is_total (Infeas s)


infeas_is_idempondent_composition

    Infeas C ; Infeas C = Infeas C


infeas_is_idempondent_unsafe_composition

    Infeas C ; Infeas C = Infeas C


fail_equiv

    Infeas C Infeas D


not_total_infeas_makes_infeasible

    ¬ is_total p ⟹ ¬ is_feasible (p Infeas (S p))


infeas_makes_total

    is_total (p Infeas (S p))


infeas_to_smaller_self

    p ; Infeas (S p) Infeas (Pre p ∩ Domain (post p))


infeas_composition

    Infeas (S p) ; p = Fail (S p)


infeas_unsafe_composition_1

    Infeas (S p) ; p = Infeas (S p)


infeas_unsafe_composition_2

    p ; Infeas (S p) Infeas (Pre p)


infeas_restriction

    Infeas (C) / D Infeas (C ∩ D)


infeas_corestriction

    Infeas (C) D = Fail (C)


infeas_corestriction2

    Infeas (C) D = Infeas (C)


Skip.thy

skip_is_valid

    is_valid (Skip s)


skip_is_feasible

    is_feasible (Skip s)


skip_is_total

    is_total (Skip s)


skip_is_idempondent_composition

    Skip C ; Skip C = Skip C


skip_is_idempondent_unsafe_composition

    Skip C ; Skip C = Skip C


skip_unsafe_compose_r_1

    p ; Skip (S p) = p


skip_compose_r_post

    post (p ; Skip (S p)) = post p


skip_compose_r_Pre_1

    Pre (p ; Skip (S p)) = (Pre p ∩ Domain (post p))


skip_compose_r_S

    S (p ; Skip (S p)) = S p


Skip_compleft

    is_feasible p ⟹ p ; Skip (S p) = p


    is_feasible p ⟹ Skip (S p) ; p = p


skip_compose2

    is_feasible p ⟹ p ; Skip (S p) p


skip_compose_r_range2

    is_feasible p ⟹ p ; Skip (Range (post p)) = p


skip_compose_r_range

    is_feasible p ⟹ p ; Skip (Range_p p) p


skip_compose4

    is_feasible p ⟹ Skip (Pre p) ; p p


skip_compose_r_3

    p ; Skip (S p) p / Domain (post p)


skip_makes_feasible

    is_feasible (p ; Skip (S p))


skip_compose_l_S

    S (Skip (S p) ; p) = S p


skip_compose_l_Pre

    Pre (Skip (S p) ; p) = Pre p


skip_compose_l_post

    post (Skip (S p) ; p) = post p / Pre p


skip_compose_l_1

    Skip (S p) ; p = 〈 State = S p, Pre = Pre p, post = post p / Pre p〉


skip_compose3

    Skip (S p) ; p p


skip_unsafe_compose_r_2

    Skip (S p) ; p = 〈State=S p, Pre=S p, post = restr_post p 〉


corestriction_prop

    p C p ; (Skip (S p) / C)


skip_prop

    Skip C Skip D Skip (C ∪ D)


skip_prop_2

    Skip (S p) / C ; p p / C


    Skip (C) ; p = p / C


Skip_comprestrict

    Skip (C) ; p p / C


skip_prop_4

    Skip D / C Skip (D ∩ C)


skip_prop_5

    C ⊆ D ⟹ Skip D / C Skip C


skip_prop_6

    S p ⊆ C ⟹ Skip C ; p p


corestrict_skip

    p ; Skip (C) p C


skip_prop_8

    Skip D C Skip (D ∩ C)


skip_prop_9

    S (Skip (C)) = C


skip_prop_10

    Skip x Skip y = Skip (x ∪ y)


skip_prop_11

    Skip {} p p


skip_prop_12

    Skip {} (p q) = p q


skip_prop_13

    (a ; Skip (S a ∪ S b) ) ; b = a ; b


skip_prop_14

    (a ; Skip (S a) ) ; b = a ; b


skip_prop_15

    (a ; Skip (S b) ) ; b = a ; b


skip_prop_16

    S a ⊆ C ⟹ post ((a ; Skip C) ; b) = post (a ; b)


skip_prop_17

    S b ⊆ C ⟹ post ((a ; Skip C) ; b) = post (a ; b)


skip_prop_18

    S a ⊆ C ⟹ Skip C ; (a ; Skip C) = (Skip (S a) ; a) ; Skip C


Arbitrary_repetition.thy

loop_l1

    s=0 ⟹ f=0 ⟹ loop p s f = Skip (S p) / (Pre p)


loop_l2

    s=0 ⟹ f=1 ⟹ loop p s f = Skip (S p) / (Pre p) (Skip (S p) / (Pre p) ; p)


loop_l2_01

    loop p (f + 1) f = Fail (S p)


loop_l2_02

    loop p 0 f ; p = loop p (0 + 1) (f + 1)


loop_l2_03

    loop p s s ; p = loop p (s + 1) (s + 1)


loop_l2_04

    s<f ⟹ loop p s f ; p = loop p (s + 1) (f + 1)


loop_l2_05

    0<s ⟹ loop p s s = ps Fail {}


loop_l2_1

    s=f ⟹ loop p s f ps


loop_l2_2

    loop p s (s + 1) = ps ps + 1


loop_l3

    s<f ⟹ loop p s (f + 1) (pf + 1) (loop p s f)


loop_l4

    s<f ⟹ loop p s f (ps) (loop p (s + 1) f)


loop_l6

    s=0 ⟹ s<f ⟹ loop p s f (Skip (S p) / (Pre p)) (loop p 1 f)


    0<s ⟹ s<f ⟹ loop p s f ps loop p (s + 1) f


loop_l5

    s<f ⟹ s < k ⟹ k < f ⟹ loop p s f (loop p s k) (loop p (k + 1) f)


loop_simplification

    all_feasible [x,y] ⟹ Range_p x ∩ Pre y = {} ⟹ Range_p y ∩ Pre x = {} ⟹ (loop x s f) (loop y s f) loop (x y) s f


equiv_is_maintained_by_arbitrary_repetition_1

    all_feasible [p1, p2] ⟹ p1 p2S p1 = S p2loop p1 s f loop p2 s f


equiv_is_maintained_by_arbitrary_repetition_2

    all_feasible [p1, p2] ⟹ p1 p2 ⟹ 0<s ⟹ loop p1 s f loop p2 s f


arbitrary_rep_feasibility_l1

    s > f ⟹ is_feasible p ⟹ is_feasible (loop p s f)


arbitrary_rep_feasibility_l2

    s < f ⟹ is_feasible p ⟹ is_feasible (loop p s f)


arbitrary_rep_feasibility

    is_feasible p ⟹ is_feasible (loop p s f)


skip_compose_l_of_loop_1

    s < f ⟹ s=0 ⟹ loop p s f Skip (S p) / (Pre p) loop p s f


skip_compose_r_of_loop_2

    is_feasible p ⟹ loop p s f loop p s f ; Skip (S p)


skip_compose_l_of_loop_3

    is_feasible p ⟹ loop p s f Skip (S p) ; loop p s f


range_fixed_rep

    s<m ⟹ m<f ⟹ x ∉ Range_p (loop p s f) ⟹ x ∉ Range_p (pm)


pre_is_known_arbitrary_rep_1

    ∀x y. x ∈ Pre a ∧ (x, y) ∈ post (a ; (b / (- C))n) → x ∈ Pre (a ; (b / (- C))n)


pre_is_known_arbitrary_rep_2

    x ∈ Pre a ⟹ (x, y) ∈ post (a ; (b / (- C))n) ⟹ x ∈ Pre (a ; (b / (- C))n)


bad_index_is_fail_arbitrary

    f<s ⟹ loop a s f Fail {}


fail_stays_fail_arbitrary

    s<f ⟹ loop p s f Fail {} ⟹ loop p s (f + 1) Fail {}


fail_stays_fail_arbitrary_2

    s<f ⟹ loop p s (f + 1) Fail {} ⟹ loop p s f Fail {}


fail_stays_fail_arbitrary_3

    s<f ⟹ loop p s (f + 1) Fail {} ≡ loop p s f Fail {}


fail_stays_fail_arbitrary_4

    s<f ⟹ loop p s s Fail {} ≡ loop p s f Fail {}


fail_arbitrary_implies_fixed

    k < n ⟹ loop (b / (- C)) 0 n Fail {} ⟹ (b / (- C)) «/sup>/a> k Fail {}


extract_fixed_from_arbitrary

    k<n ⟹ a ; loop (b / (- C)) 0 n C a ; loop (b / (- C)) 0 n C a ; ((b / (- C)) «/sup>/a> k) C


fail_arbitrary_implies_fixed_2

    k < n ⟹ a ; loop (b / (- C)) 0 n C Fail {} ⟹ a ; ((b / (- C)) «/sup>/a> k) C Fail {}


    Fail (S x) x «/sup>/a> 0 = x «/sup>/a> 0


fixed_prop

    0<f ⟹ Fail (S x) x «/sup>/a> f = x «/sup>/a> f


loop_choice3

    0<s ⟹ 0<f ⟹ all_feasible [x,y] ⟹ Range_p x ∩ Pre y = {} ⟹ Range_p y ∩ Pre x = {} ⟹ (loop x s f) (loop y s f) = loop (x y) s f


Loop_fail

    loop p 0 n Fail {} ⟹ loop p 0 m Fail{}


Atomic_concurrency.thy

    foldl (f::’a Program ⇒ ‘a Program ⇒ ‘a Program) (f a x) xs = f a (foldl f x xs)


complete_state_subset_fold_composition

    x ∈ complete_state xs ⟹ x ∈ S (foldl (;) (Skip (complete_state xs)) xs)


fold_choice_inv_1

    foldl () (Fail {}) (a # xs) = a foldl () (Fail {}) (xs)


fold_choice_inv_2

    S (foldl () (Fail {}) xs ) = ⋃ (set (map (S) xs))


conc_elems_state

    x ∈ set (conc_elems xs) ⟹ S x = complete_state xs


atomic_conc_complete_state

    S (atomic_conc xs) = complete_state xs


atomic_conc_equivalence

    xs ≠ [ ] ⟹ S (Concat xs C) = S (atomic_conc xs)


pre_zero

    Pre (atomic_conc [ ]) = {}


pre_one

    is_feasible x ⟹ Pre (atomic_conc [x]) = Pre x


lemma_pre_1

    Pre (atomic_conc (a#[b])) ⊆ Pre a ∪ Pre b


list_equiv_reflexive

    list_equiv xs xs


list_equiv_comp_equiv

    list_equiv xs ys ⟹ b b’ ⟹ fold (;) xs b fold (;) ys b’


skip_prop_1

    is_feasible a ⟹ S a ⊆ C ⟹ a ; Skip C a


skip_prop_2

    is_feasible a ⟹a ; Skip (complete_state (a # xs)) a


skip_restrict

    is_feasible a ⟹ fold (;) xs (a ; Skip (complete_state (a # xs))) fold (;) xs a


feas_of_prop

    is_feasible (feas_of p)


feas_of_prop2

    is_feasible p ⟹ feas_of p = p


skip_prop_4

    a ; Skip (S a) feas_of a


skip_prop_5

    fold (;) xs (Skip (complete_state (a # xs)) ; a) fold (;) xs a


get_trace

    xs ≠ [ ] ⟹ x ∈ set (conc_elems xs) ⟹ ∃tr. tr ∈ set (permutations xs) ∧ x = Concat tr C


skip_prop_6

    Skip (S p ∪ x) ; p Skip (S p) ; p


no_right_neutral

    ∃t. p ; t p


corestrict_skip

    (a ; Skip (S a ∪ S b)) ; b a ; b


skip_prop_8

    (a ; Skip (S a)) ; b a ; b


skip_prop_9

    (a ; Skip (S b)) ; b a ; b


fold_decomp

    xs ≠ [ ] ⟹ (foldl (;) (a) (xs)) a ; (foldl (;) (Skip (complete_state xs)) (xs))


fold_decomp2

    xs ≠ [ ] ⟹ (foldl (;) (a) (xs)) a ; (foldl (;) (Skip (S a)) (xs))


fold_equiv_maintained

    a b ⟹ foldl (;) a xs foldl (;) b xs


fold_compress_1

    ys ≠ [ ] ⟹ ∃e’. (a) ; e’ (foldl (;) (Skip (complete_state ([a]@ys))) ([a]@ys))


fold_compress_2

    ∃e’. e’ ; a (foldl (;) (Skip (complete_state (ys@[a]))) (ys@[a]))


fold_compress_3

    ∃s’ e’. (s’ ; a) ; e’ (foldl (;) (Skip (complete_state (xs@[a]@ys))) (xs@[a]@ys)) ∨ s’ ; a=(foldl (;) (Skip (complete_state (xs@[a]@ys))) (xs@[a]@ys))


conc_elems_dec

    x ∈ set (conc_elems (a # xs)) ⟹ ∃s’ e’. (s’ ; a) ; e’ = x ∨ s’ ; a=x ∨ a = x∨ a ; e’ = x


concat_prop_1

    xs ≠ [ ] ⟹ tr ∈ set (permutations xs) ⟹ Concat tr (complete_state xs) ∈ set (conc_elems xs)


fold_choice_inv

    t ∈ set (xs) ⟹ foldl () (x) (xs) = t (foldl () (x) (xs))


atomic_conc_inv

    tr ∈ set (conc_elems xs) ⟹ tr atomic_conc xs atomic_conc xs


atomic_conc_inv2

    x ∈ set (conc_elems xs) ⟹ x atomic_conc xs


atomic_conc_inv3

    xs ≠ [ ] ⟹ Concat xs (complete_state xs) atomic_conc xs


perm_prop

    set (permutations (a@b)) = set (permutations (b@a))


perm_prop2

    x ∈ set (permutations y) ⟹ set (conc_elems (y)) = set (conc_elems (x))


perm_prop3

    set (conc_elems (a@b)) = set (conc_elems (b@a))


perm_prop4

    size (insert_all x xs) = size xs + 1


perm_prop5

    size (concat [ ]) = 0


perm_prop6

    size (concat (x#xs)) = size x + size (concat (xs))


perm_prop7

    size (concat xs) = foldl (λa b. a + (size b)) 0 xs


perm_prop8

    a ∈ set (map (insert_all x) (permutations xs)) ⟹ b ∈ set a ⟹ size b = size xs + 1


perm_prop9

    a ∈ set (map (insert_all x) (permutations xs)) ⟹ size a = size xs + 1


size_concat

    size (concat xss) = sum_list (map size xss)


insert_all_prop

    size (concat (map (insert_all x) xss)) = sum_list (map (λy. Suc (size y)) xss)


    x ∈ set (permutations xs) ⟹ y ∈ set (permutations xs) ⟹ size x = size y


sum_list_simp

    (∀x ∈ set xss. ∀ y ∈ set xss. size x = size y) ⟹ sum_list (map size xss) = size xss * size (hd xss)


size_lemma

    ∀x ∈ set xs. size x = n ⟹ size (concat xs) = size xs * n


length_concat_insert_all

    length (concat (map (insert_all x) (permutations xs))) = (length xs + 1) * length (permutations xs)


size_permutations_fact

    length (permutations xs) = fact (length xs)


perm_size_eq

    size xs = size ys ⟹ size (permutations xs) = size (permutations ys)


perm_prop10

    size (permutations (x#xs)) = size (permutations (xs)) * size (x#xs)


fold_choice_prop1

    permutations a = permutations b ⟹ set (conc_elems a) = set (conc_elems b)


    size xs > 0⟹ size (conc_elems xs) > 0


fold_choice_prop2

    a ∈ set xs ⟹ foldl () a xs = foldl () (Skip {}) xs


fold_choice_prop3

    a ∈ set (conc_elems (xs)) ⟹ foldl () (a) (conc_elems (xs)) = foldl () (Skip {}) (conc_elems (xs))


fold_choice_prop5

    foldl () x (x’#xs) = foldl () (Fail {}) (x#x’#xs)


atomic_prop2

    xs ≠ [ ] ⟹ ys ∈ set (permutations xs) ⟹ Concat ys (complete_state xs) atomic_conc xs


atomic_prop3

    atomic_conc [a,b] a ; b b ; a


equiv_to_equal

    S a = S b ⟹ post a = post b ⟹ a b ⟹ a = b


atomic_prop4

    atomic_conc [a, b c] atomic_conc [a,b] atomic_conc [a,c]


atomic_prop5

    atomic_conc [a b] = atomic_conc [a] atomic_conc [b]


set_to_list_set

    finite xs ⟹ set (set_to_list xs) = xs


specialize_prop

    a = b ⟹ b a ∧ a b


atomic_prop6

    atomic_conc [a b, c] atomic_conc [a,c] atomic_conc [b,c]


commute_compose

    commute_programs3 a b ⟹ atomic_conc [a,b] a ; b


Big_choice.thy

fold_compose

    foldl (;) (a ; b) xs = a ; (foldl (;) b xs)


fold_choice

    foldl () (a b) xs = a (foldl () b xs)


Choice_prop_1_2

    xs ≠ [ ] ⟹ (x#xs) = x xs


Choice_prop_1_3

    a@b ≠ [ ] ⟹ (a@x#b) = x (a@b)


Choice_prop_1_1

    ys ∈ set (permutations xs) ⟹ xs = ys


Choice_prop_1

    xs ≠ [ ] ⟹ (xs@[x]) = x xs


Choice_prop_1_4

    xs ≠ [ ] ⟹ foldl () x xs = x Choice xs


Choice_prop_2

     [a ; t. t ← xs] a ;⋃ [t. t ← xs]


Choice_prop_3

    xs ≠ [ ] ⟹ (xs@[x]) = (xs) x


Choice_prop_4

     [t ; a. t ← xs] [t. t ← xs] ; a


Choice_state

    S ( (xs)) = ⋃ {S x x . x ∈ set xs}

Union_prop_1

    xs ≠ {} ⟹ ⋃ {t x . x ∈ xs} = t

Choice_prop_5

    size xs = 1 ⟹ set (xs) = {x} ⟹ ( xs = x)


Choice_prop_6

    size xs > 1 ⟹ set (xs) = {x} ⟹ ( xs = x x)


Choice_prop_7

    a ≠ [ ] ⟹ b ≠ [ ] ⟹ a b = (a@b)


Choice_prop_8

    ∃x ∈ set xs. p x ⟹ ∃x ∈ set xs. ¬ p x ⟹ (filter (λx. p x) xs) (filter (λx. ¬ p x) xs) = xs


Choice_prop_9

    size xs>1 ⟹ size ys>1 ⟹ set xs = set ys ⟹ (xs) = (ys)


Choice_prop_10

    size xs=1 ⟹ size ys=1 ⟹ set xs = set ys ⟹ (xs) = (ys)


Choice_prop11

    size xs > 1 ⟹ (filter (λt. P t) xs) (filter (λt. ¬ P t) xs) = xs


Choice_prop12

    x ∈ set xs ⟹ (filter ((=) x) (x#xs)) = x x


Choice_state_1

    complete_state xs = S (Choice xs)


Concat_prop_1

    xs ≠ [ ] ⟹ foldl (;) x xs = x ; Concat xs s


Concat_state

    xs ≠ [ ] ⟹ complete_state xs = S (Concat xs s)


Choice_prop_13

    size xs > 0 ⟹ [a ; (Concat t s). t ← xs] a ;⋃ [(Concat t s). t ← xs]


Choice_prop_14

     [t / C . t ← xs] [t . t ← xs]/ C


     [t / C . t ← xs] = [t . t ← xs]/ C


Choice_prop_15

     [t C . t ← xs] = [t . t ← xs]∖ C


Concat_prop_2

    xs ≠ [ ] ⟹ Concat (xs@[x]) s = Concat xs s ; x


Concat_prop_3

    xs ≠ [ ] ⟹ Concat xs s / C Concat (hd xs / C # tl xs) s


Concat_prop_4

    xs ≠ [ ] ⟹ Concat xs s C Concat (butlast xs @ [(last xs)∖ C]) s


Choice_prop_16

    x ∈ set xs ⟹ xs xs x


Choice_prop_17

    size xs > 1 ⟹ x ∈ set xs ⟹ xs = xs x


Concat_prop_5

    xs ≠ [ ] ⟹ ys ≠ [ ] ⟹ Concat (xs@ys) s = Concat xs s ; Concat ys s


Concat_prop_6

    Concat (a b # xs) s = Concat (a # xs) s Concat (b # xs) s


Concat_prop_7

    Concat (xs@[a b]) s Concat (xs@[a]) s Concat (xs@[b]) s


Concat_prop_8

    e ≠ [ ] ⟹ Concat (s@(a b)#e) s’ Concat (s@a#e) s’ Concat (s@b#e) s’


Choice_prop_18

    size b > 1 ⟹ b = b Fail {}


Choice_prop_19

    size (a@b) > 1 ⟹ a b = (a@b)


Choice_prop_20

    size (a@b) > 0 ⟹ a (x b) = (a@x#b)


Choice_prop_21

    S x ⊆ complete_state (a@b) ⟹ a (x / FALSE b) = a (Fail {} b)


list_prop

    1 < i ⟹ i < n ⟹ [p . t ← [1 .. int n]] = [p . t ← [1 .. int i]] @ [p . t ← [int (i + 1) .. int n]]


list_prop2

    [p . t ← [1 .. int (n + 1)]] = [p . t ← [1 .. int n]]@[p]


list_prop3

    size x = size y ⟹ [p. t ← x] = [p. t ← y]


list_prop4

    [p . t ← [1 .. int (n + 1)]] = p#[p . t ← [1 .. int n]]


Concat_prop_9

    0<n ⟹ Concat [p . t ← [1 .. int n]] s ; p = Concat [p . t ← [1 .. int (n + 1)]] s


Concat_prop_10

    xs ≠ [ ] ⟹ Concat (x#xs) s = x ; Concat xs s


Concat_prop_11

    0<n ⟹ p ; Concat [p . t ← [1 .. int n]] s = Concat [p . t ← [1 .. int (n + 1)]] s


Choice_prop_22

    a (x#xs) = a (x xs)


Choice_prop_23

    ∀x ∈ set xs. x = y ⟹ xs = Fail {} ∨ xs = y ∨ xs = y y


Choice_prop_24

    distinct xs ⟹ distinct ys ⟹ set xs = set ys ⟹ size xs = size ys ⟹ xs = ys


atomic_prop_1

    finite F ⟹ ∀x ∈ F. is_atomic x ⟹ get_atomic ( (set_to_list F)) = F


decomp_programs

    Pre a = Pre p - {y} ⟹ post b = {t. t ∈ post p ∧ (fst t=y ∨ snd t=y)} ⟹ Pre b = Pre p ∩ ({y} ∪ Domain (post p {y})) ⟹ post a = {t. t ∈ post p ∧ (fst t ≠ y ∧ snd t ≠ y)} ⟹ a b p


    is_feasible p ⟹ finite (S p) ⟹ ∃xs. xs p ∧ (∀x ∈ set xs. is_atomic x)


civilized_finite

    civilized_n x B n ⟹ finite B


civilized_ind

    civilized_n x B n ⟹ civilized_n x B (n + 1)


civilized_ind2

    ⋀m. n<m ⟹ civilized_n x B n ⟹ civilized_n x B m


civilized_generic

    civilized_n x B n = ((∃a b m m’. m<n ∧ m’<n ∧ civilized_n a B m ∧ civilized_n b B m’ ∧ (a ; b = x ∨ a b = x)) ∧ finite B) ∨ civilized_n x B 0


civ_prop_1

    civilized_n p B n ⟹ civilized p B


civ_prop_2

    civilized p B ⟹ civilized q B ⟹ civilized (p ; q) B


civ_prop_3

    civilized p B ⟹ civilized q B ⟹ civilized (p q) B


fold_prop

    foldl (∪) {} xs = {} ⟹ t ∈ set xs ⟹ t = {}


fold_prop2

    x ∈ tr ⟹ tr ∈ set xs ⟹ foldl (∪) {} xs ⊆ B ⟹ x ∈ B


normal_prop1

    set x ⊆ {p} ⟹ ∃n. x = replicate n p


basic_normal

    basic a = basic b ⟹ normal_of a B = normal_of b B


basic_normal2

    basic a = insert (Fail {}) (basic b) ⟹ normal_of a B = normal_of b B


normal_prop2

    finite B ⟹ normal_of [[ ]] B


normal_prop3

    finite B ⟹ normal_of [[〈State = {}, Pre = {}, post = {}〉]] B


normal_prop4

    infinite B ⟹ ¬ normal_of xs B


normal_prop5

    finite B ⟹ normal_of xs B ⟹ normal_of ([ ]#xs) B


normal_prop6

    finite B ⟹ normal_of ([ ]#xs) B ⟹ normal_of xs B


normal_prop7

    normal_of [x#xs] B = (normal_of [[x]] B ∧ normal_of [xs] B)


basic_prop0

    basic [[x]] ∪ basic [xs] = basic [x#xs]


basic_prop1

    basic [x] ∪ basic xs = basic (x#xs)


basic_prop2

    basic xs ∪ basic ys = basic (xs@ys)


normal_prop8

    trace ∈ set xs ⟹ normal_of xs B ⟹ normal_of [trace] B


normal_prop9

    normal_of ((a # x) # xs) B ⟹ normal_of [[a]] B


basic_prop3

    trace ∈ set xs ⟹ basic [trace] ⊆ basic xs


basic_prop4

    x ∈ set trace ⟹ basic [[x]] ⊆ basic [trace]


normal_prop10

    x ∈ set trace ⟹ trace ∈ set xs ⟹ normal_of xs B ⟹ normal_of [[x]] B


normal_prop11

    normal_of ((a#x)#xs) B = (normal_of [[a]] B ∧ normal_of (x#xs) B)


normal_prop12

    normal_of (x#xs) B = (normal_of [x] B ∧ normal_of xs B)


normal_prop13

    normal_of (a#p) B = normal_of ((〈State = {}, Pre = {}, post = {}〉#Skip (complete_state (set_to_list B))#a)#p) B


fold_prop1

    trace ∈ set p ⟹ x ∈ set trace ⟹ x ∈ foldl (∪) {} (map set p)


normal_prop14

    normal_of p B ⟹ trace ∈ set p ⟹ x ∈ set trace ⟹ x ∈ {Fail {}, Skip (complete_state (set_to_list B))} ∪ B


basic_monotone1

    basic a ⊆ basic (x#a)


basic_monotone2

    x ∈ set p ⟹ basic [x] ⊆ basic p


basic_decomp1

    basic [x] ∪ basic xs = basic (x#xs)


basic_decomp2

    basic [x] ∪ basic xs = basic (xs@[x])


fold_prop3

    foldl (∪) (foldl (∪) {} xs) ys = foldl (∪) {} xs ∪ foldl (∪) {} ys


basic_decomp

    basic a ∪ basic b = basic (a@b)


basic_monotone

    set a ⊆ set b ⟹ basic a ⊆ basic b


basic_prop

    basic (a@b) ⊆ B ⟹ basic b ⊆ B


basic_prop5

    basic (a@b) ⊆ B ⟹ basic a ⊆ B


basic_monotone3

    basic [a] ⊆ basic [a@b]


basic_monotone4

    basic [b] ⊆ basic [a@b]


basic_monotone5

    basic [b] ∪ basic [a] = basic [a@b]


civilized_empty2

    finite B ⟹ civilized_n ( [ ]) B 0


civilized_empty3

    finite B ⟹ civilized_n (Fail {}) B 0


civilized_empty4

    finite B ⟹ civilized_n (Skip {}) B 0


normal_civilized

    normal_of p B ⟹ civilized (evaluate p (complete_state (set_to_list B))) B


concat_prop1

    evaluate ([ ] ; b) c = Fail {}


concat_prop2

    evaluate [ ] c = Fail {}


concat_prop3

    xs ≠ [ ] ⟹ evaluate (x#xs) c = evaluate [x] c evaluate xs c


concat_prop4

    complete_cnf_state (x#xs) ⊆ c ⟹ xs ≠ [ ] ⟹ evaluate (x#xs) c = evaluate [x] c evaluate xs c


concat_prop4_1

    evaluate (x#xs) c evaluate [x] c evaluate xs c


fail_compose

    Fail {} ; p Fail {}


concat_prop5

    evaluate (a@b) c evaluate a c evaluate b c


Skip_concat

    Skip (complete_state a) ; Concat a (complete_state a) Concat a (complete_state a)


concat_prop

    a ≠ [ ] ⟹ Concat a (insert x (complete_state a)) Concat a (complete_state a)


state_prop1

    S (evaluate xs C) ∪ S (evaluate [x] C) = S (evaluate (x#xs) C)


state_prop2

    S (evaluate xs C) ∪ S (evaluate ys C) = S (evaluate (ys@xs) C)


eval_prop

    [ ] ∉ set xs ⟹ evaluate xs C = evaluate xs D


state_prop3

    [ ] ∈ set xs ⟹ complete_cnf_state (xs) ⊆ S (evaluate (xs) (complete_cnf_state (xx#xs)))


state_prop4

    [ ] ∉ set xs ⟹ complete_cnf_state (xs) ⊆ S (evaluate (xs) (complete_cnf_state (xx#xs)))


state_prop5

    complete_cnf_state (xs) ⊆ S (evaluate (xs) (complete_cnf_state (xx#xs)))


state_prop6

    S (evaluate xs (complete_cnf_state xs)) = complete_cnf_state xs


skip_prop2

    Skip (complete_cnf_state xs) ; evaluate (xs) (complete_cnf_state xs) evaluate (xs) (complete_cnf_state xs)


concat_prop6

    evaluate ([ ]#xs) (complete_cnf_state xs) Skip (complete_cnf_state xs) evaluate xs (complete_cnf_state xs)


non_empty0

    non_empty (non_empty xs) = non_empty xs


non_empty1

    non_empty [ ] = [ ]


non_empty2

    non_empty [[ ]] = [ ]


cnf_choice1

    [ ] p = non_empty p


cnf_choice1

    [ ] p = p


non_empty3

    non_empty ([ ]#xs) = non_empty xs


non_empty4

    non_empty (a@b) = non_empty a @ non_empty b


cnf_choice2

    non_empty (x#xs) = [x] xs


cnf_choice2

    (x#xs) = [x] xs


cnf_choice3

    ys (x#xs) = (ys@[x]) xs


non_empty5

    non_empty ((xx # x) # b) = (xx#x) # (non_empty b)


non_empty6

    non_empty ((xx # x) # b) = [xx#x] (non_empty b)


non_empty6

    ((xx # x) # b) = [xx#x] b


non_empty7

    ((x#xs)@(y#ys)) = (x#xs) (y#ys)


non_empty7

    non_empty ((x#xs)@(y#ys)) = (x#xs) (y#ys)


non_empty8

    a b ≠ [[ ]] ⟹ a b = (non_empty a) (non_empty b)


    evaluate (non_empty a) = evaluate a


cnf_choice_4

    evaluate (a b) = evaluate (non_empty a non_empty b)


state_prop7

    S (evaluate [y] (complete_state y)) = complete_state y


skip_prop

    S x ⊆ C ⟹ is_feasible x ⟹x ; Skip C x


concat_prop8

    complete_state y ⊆ C ⟹ evaluate [[ ]] C ; evaluate [y] C evaluate ([[ ]] ; [y]) C


concat_prop9

    x ≠ [ ] ⟹ y ≠ [ ] ⟹ [x] ; [y] = [x@y]


concat_prop10

    complete_state (x#xs) ⊆ C ⟹ all_feasible (x#xs) ⟹ evaluate [[x]] C ; evaluate [xs] C evaluate ([[x]] ; [xs]) C


feas_prop1

    all_feasible (x @ y) ⟹ all_feasible x


feas_prop2

    all_feasible (x @ y) ⟹ all_feasible y


concat_prop11

    all_feasible (x@y) ⟹ complete_state (x@y) ⊆ C ⟹ evaluate [x] C ; evaluate [y] C evaluate ([x] ; [y]) C


concat_prop11_1

    all_feasible (x@y) ⟹ evaluate [x] (complete_state (x@y)) ; evaluate [y] (complete_state (x@y)) evaluate ([x] ; [y]) (complete_state (x@y))


concat_prop12

    all_feasible (a#x@y) ⟹ (complete_state (a#x@y)) ⊆ C ⟹ evaluate [a # x] C ; evaluate [y] C evaluate ([a # x] ; [y]) C


concat_prop12_1

    all_feasible (a#x@y) ⟹ evaluate [a # x] (complete_state (a#x@y)) ; evaluate [y] (complete_state (a#x@y)) evaluate ([a # x] ; [y]) (complete_state (a#x@y))


choice_non_empty

    non_empty a b = a b


choice_non_empty2

    non_empty a non_empty b = a b


non_empty9

    x ∈ set (non_empty xs) ⟹ x ∈ set xs


non_empty10

    non_empty xs = [y] ⟹ ∃a b. a@y#b = xs


non_empty11

    xs = [ ] ⟹ evaluate xs C = Fail {}


non_empty12

    non_empty xs = [x] ⟹ non_empty xs = xs ⟹ evaluate xs = evaluate [x]


nonempty_monotonic

    size (non_empty (x#xs)) > size (non_empty xs)


non_empty_reduces_size

    size (non_empty xs) < size xs


non_empty_13

    size (x#xs) = size (non_empty (x#xs)) ⟹ x ≠ [ ]


non_empty_14

    size b = size (non_empty b) ⟹ b = (non_empty b)


eval_prop3

    size b = 1 ⟹ size (non_empty b) = 1 ⟹ evaluate b = evaluate (non_empty b)


comp_cnf3

    x ≠ [ ] ⟹ y ≠ [ ] ⟹ Concat x (complete_state (x@y)) ; Concat y (complete_state (x@y)) = Concat (x @ y) (complete_state (x@y))


comp_prop1

    x ; (y Skip {}) x ; y


choice_cnf_thm

    evaluate xs (complete_cnf_state (xs@ys)) evaluate ys (complete_cnf_state (xs@ys)) evaluate (xs ys) (complete_cnf_state (xs@ys))


non_empty14

    ∀t ∈ set xs. t ≠ [ ] ⟹ non_empty xs = xs


choic_cnf1

    (x#xs) ; ys = ([x] ; ys) (xs ; ys)


comp_distrib_r

    (b c) ; a = (b ; a) (c ; a)


choice_cnf_commute

    a (b c) = (a b) c


equal_sym

    equal_cnf a b = equal_cnf b a


equal_empty

    equal_cnf a [ ] ⟹ a = [ ]


eval_prop1

    ys≠[ ] ⟹ evaluate ys C evaluate [y] C = evaluate (ys @ [y]) C


evaluate_switch

    evaluate (y#ys) C = evaluate (ys@[y]) C


evaluate_split

    xs≠[ ] ⟹ ys ≠ [ ] ⟹ evaluate (xs@ys) C = evaluate xs C evaluate ys C


evaluate_switch2

    evaluate (yss@yse) C = evaluate (yse@yss) C


eval_perm

    a#ys’ ∈ set (permutations ys) ⟹ evaluate (a#ys’) C = evaluate ys C


perm_eval

    xs ∈ set (permutations ys) ⟹ evaluate xs C = evaluate ys C


perm_prop

    [t. t ← xs, ¬ p t] @ [t. t ← xs, p t] ∈ set (permutations xs)


size_prop

    size ([t. t ← xs, ¬ p t] @ [t. t ← xs, p t]) = size xs


evaluate_split1

    size (xs@ys) ≠ 1 ⟹ evaluate xs C evaluate ys C = evaluate (xs@ys) C


evaluate_split2

    size xs ≠1 ⟹ evaluate xs C = evaluate [t. t ← xs, t =x] C evaluate [t. t ← xs, t≠x] C


size_prop1

    size [t. t←a, t=x] + size [t. t←a, t≠x] = size a


evaluate_prop

    size xs = 1 ⟹ ∀t ∈ set xs. t=x ⟹ evaluate xs = evaluate [x]


evaluate_prop2

    size xs > 1 ⟹ ∀t ∈ set xs. t=x ⟹ evaluate xs C = evaluate [x] C evaluate [x] C


equal_eval

    equal_cnf a b ⟹ evaluate a C = evaluate b C


eval_simp

    ∀C. evaluate a C = evaluate b C ⟹ evaluate a = evaluate b


equal_eval2

    equal_cnf a b ⟹ evaluate a = evaluate b


eq_reflexive

    equal xs xs


comp_prop

    tr ∈ set (xs ; ys) ⟹ ∃x y. x ∈ set xs ∧ y ∈ set ys ∧ x@y = tr


comp_prop2

    x ∈ set xs ⟹ y ∈ set ys ⟹ x@y ∈ set (xs ; ys)


choice_prop

    tr ∈ set (xs ys) ⟹ (tr ∈ set xs ∨ tr ∈ set ys)


same_traces_size_equal

    ∀tr ∈ set xs. tr ∈ set ys ⟹ ∀tr ∈ set ys. tr ∈ set xs ⟹ size xs = size ys ⟹ equal_cnf xs ys


same_traces_size_equal2

    size xs = size ys ⟹ equal_cnf xs ys ⟹ ∀tr ∈ set xs. tr ∈ set ys


same_traces_size_equal3

    size xs = size ys ⟹ equal_cnf xs ys ⟹ ∀tr ∈ set ys. tr ∈ set xs


comp_prop3

    ∃q w. q ∈ set a ∧ w ∈ set b ∧ tr = q @ w ∧ q ≠ [ ] ∧ w ≠ [ ] ⟹ tr ∈ set (a ; b)


choice_prop2

    ∃q. (q ∈ set a ∨ q ∈ set b) ∧ tr = q ∧ q ≠ [ ] ⟹ tr ∈ set (a b)


    size (a b) = size (a) + size (b)


comp_size

    x ≠ [ ] ⟹ length (((xx # x) # xs) ; b) = length ((x # xs) ; b)


comp_size2

    size ([[a]] ; b) = size b


comp_size3

    size (a ; b) = size a * size b


feas_prop

    all_feasible xs ⟹ is_feasible (Concat xs C)


feas_prop3

    is_feasible (evaluate [ ] C)


feas_prop4

    is_feasible (evaluate [[ ]] C)


feas_prop5

    is_feasible x ⟹ is_feasible (evaluate [[x]] C)


eval_prop4

    xs ≠ [ ] ⟹ evaluate [x # xs] C = evaluate [[x]] C ; evaluate [xs] C


feas_prop6

    all_feasible xs ⟹ is_feasible (evaluate [xs] C)


feas_prop7

    ∀bb ∈ set b. all_feasible bb ⟹ is_feasible (evaluate b C)


cnf_state_prop

    complete_cnf_state (x#b) ⊆ C ⟹ complete_cnf_state b ⊆ C


cnf_state_prop2

    complete_state xs ⊆ C ⟹ S (evaluate [xs] C) ⊆ C


cnf_state_prop1

    complete_cnf_state xs ⊆ C ⟹ S (evaluate xs C) ⊆ C


skip_left_neutral

    complete_cnf_state b ⊆ C ⟹ Skip C ; evaluate b C evaluate b C


skip_right_neutral

    ∀bb ∈ set b. all_feasible bb ⟹ complete_cnf_state b ⊆ C ⟹ evaluate b C ; Skip C evaluate b C


feas_prop8

    all_feasible x ⟹ all_feasible b1 ⟹ all_feasible (x @ b1)


state_prop

    y ∈set ys ⟹ complete_state (ys) = complete_state (y#ys)


state_prop8

    set xs ⊆ set ys ⟹ complete_state xs ⊆ complete_state ys


state_prop9

    complete_cnf_state (xs # [ys]) = complete_state (xs @ ys)


compose_equiv

    complete_cnf_state (x#b) ⊆ C ⟹ all_feasible x ⟹ ∀bb ∈ set b. all_feasible bb ⟹ evaluate [x] C ; evaluate b C evaluate ([x] ; b) C


state_prop10

    complete_cnf_state (a) ⊆ complete_cnf_state (a @ b)


state_prop11

    complete_cnf_state (b) ⊆ complete_cnf_state (a @ b)


state_prop12

    set xs ⊆ set ys ⟹ complete_cnf_state xs ⊆ complete_cnf_state ys


eval_choice

    evaluate xs C evaluate ys C evaluate (xs ys) C


comp_choice

    ([x] ; b) (a’ ; b) = (x#a’) ; b


normal_prop15

    set a = set b ⟹ normal_of a B = normal_of b B


normal_prop16

    set a ⊆ set b ⟹ normal_of b B → normal_of a B


non_empty_is_smaller

    set (non_empty xs) ⊆ set xs


normal_prop17

    normal_of a B ⟹ normal_of (non_empty a) B


normal_prop17_5

    normal_of xs B ⟹ normal_of [x] B ⟹ normal_of (x#xs) B


normal_prop18

    normal_of a B ⟹ normal_of b B ⟹ normal_of (a b) B


basic_prop6

    basic (map ((@) x) bs) ⊆ basic [x] ∪ basic bs


normal_prop19

    normal_of [x] B ⟹ normal_of b B ⟹ normal_of [x@ys. ys ← b] B


normal_prop20

    normal_of a B ⟹ normal_of b B ⟹ normal_of (a ; b) B


state_prop13

    normal_of [x] B ⟹ complete_cnf_state [x] ⊆ complete_state (set_to_list B)


state_prop14

    normal_of xs B ⟹ complete_cnf_state xs ⊆ complete_state (set_to_list B)


feas_prop9

    all_feasible (set_to_list B) ⟹ normal_of xs B ⟹ ∀tr ∈ set xs. all_feasible tr


comp_prop4

    all_feasible x ⟹ all_feasible y ⟹ complete_state x ⊆ C ⟹ complete_state y ⊆ C ⟹ evaluate ([x] ; [y]) C evaluate [x] C ; evaluate [y] C


    complete_cnf_state (x#ys) ⊆ C ⟹ ∀tr∈set (x#ys). all_feasible tr ⟹ evaluate ([x] ; ys) C evaluate ([x]) C ; evaluate (ys) C


civilized_thm1

    all_feasible (set_to_list B) ⟹ S p ⊆ C ⟹ civilized_n p B n ⟹ ∃(y::’a CNF). evaluate y C p ∧ normal_of y B


set_to_list_prop

    finite F ⟹ y ∉ F ⟹ count_list (set_to_list F) y = 0


set_to_list_prop2

    finite F ⟹ count_list (set_to_list (F - {y})) y = 0


set_to_list_prop3

    count_list (set_to_list {y}) y = 1


set_to_list_prop4

    count_list (set_to_list {}) y = 0


set_to_list_prop5

    finite F ⟹ y ∉ F ⟹ set_to_list (insert y F) ∈ set (permutations (y # set_to_list F))


    finite F ⟹ count_list (set_to_list (insert x F)) x = 1


set_to_list_prop6

    finite F ⟹ x ∉ F ⟹ count_list (set_to_list (insert x F)) y = count_list (x#set_to_list F) y


set_to_list_prop7

    finite F ⟹ x ∉ F ⟹ x ≠ y ⟹ count_list (set_to_list (insert x F)) y = count_list (set_to_list F) y


set_to_list_prop8

    x=y ⟹ count_list (yst@x#ynd) y = count_list (yst@ynd) y + 1


set_to_list_prop9

    x≠y ⟹ count_list (yst@x#ynd) y = count_list (yst@ynd) y


set_to_list_prop10

    xs ∈ set (permutations ys) ⟹ count_list xs = count_list ys


set_to_list_prop11

    finite F ⟹ count_list (set_to_list F) x < 1


set_to_list_prop12

    finite F ⟹ x ∈ F ⟹ count_list (set_to_list F) x = 1


set_to_list_prop13

    count_list xs x = 1 ⟹ count_list (set_to_list (set xs)) x = 1


set_to_list_prop14

    finite F ⟹ complete_state (set_to_list (insert y F)) = complete_state (set_to_list (F)) ∪ S y


set_to_list_prop15

    civilized p B ⟹ S p ⊆ complete_state (set_to_list B)


civilized_thm2

    all_feasible (set_to_list B) ⟹ civilized p B ⟹ ∃(y::’a CNF). evaluate y (complete_state (set_to_list B)) p ∧ normal_of y B


fail_is_civilized

    finite B ⟹ civilized (Fail{}) B


skip_is_civilized

    finite B ⟹ civilized (Skip (complete_state (set_to_list B))) B


civilized_thm3

    ∃(y::’a CNF). evaluate y (complete_state (set_to_list B)) = p ∧ normal_of y B ⟹ civilized p B


composition_cnf_prop1

    [[x]] ; xs = [x#ys. ys ← xs]


composition_cnf_prop2

    [y#ys] ; xs = [( y#ys)@t. t ← xs]


non2_prop1

    non_empty x = [ ] ⟹ non_empty2 (x # xs) = non_empty2 xs


non2_prop2

    non_empty x ≠ [ ] ⟹ non_empty2 (x # xs) = non_empty x # non_empty2 xs


non2_prop3

    non_empty2 (xs @ ys) = non_empty2 xs @ non_empty2 ys


non2_prop4

    size (non_empty2 xs) < size xs


non2_prop5

    non_empty2 (x#xs) = x#xs ⟹ non_empty2 xs = xs


non2_prop5_5

    non_empty2 [x] = [x] ⟹ ∀path∈set x. path ≠ [ ]


non2_prop6

    non_empty2 xs = xs ⟹ ∀prog ∈ set xs. prog ≠ [ ] ∧ (∀path ∈ set prog. path ≠ [ ])


non_prop1

    non_empty xs = xs ⟹ ∀path ∈ set xs. path ≠ [ ]


non2_prop7

    non_empty2 xs = xs ⟹ x ∈ set xs ⟹ non_empty x = x


non2_idem

    non_empty2 xs = non_empty2 (non_empty2 xs)


inter_head

    p ∈ set ((x#xs) (y#ys)) ⟹ hd p = x ∨ hd p = y


count_prop

    count_list (map ((#) x) xs) (x#p) = count_list xs p


count_prop2

    x≠y ⟹ count_list (map ((#) x) xs) (y#p) = 0


interleave_non_empty

    p ∈ set ((x#xs) (y#ys)) ⟹ p ≠ [ ]


inter2

    count_list (ys xs) p = count_list (xs ys) p


inter_perm

    ys xs ∈ set (permutations (xs ys))


t1

    size xs = size ys ⟹ ∀t∈set (zip xs ys). fst t ∈ set (permutations (snd t)) ⟹ concat xs ∈ set (permutations (concat ys))


t15

    size xs = size ys ⟹ ∃xs’. xs’ ∈ set (permutations xs) ∧ (∀t∈set (zip xs’ ys). fst t ∈ set (permutations (snd t))) ⟹ concat xs ∈ set (permutations (concat ys))


t2

    size [f x y. x ← xs, y ← ys] = size xs * size ys


t3

    size [path_m path_n. path_m ← xs, path_n ← ys] = size [path_m path_n. path_m ← ys, path_n ← xs]


index_prop

    length xs = a ⟹ (xs@ys)!(a+b) = ys!b


index_prop2

    a < length xs ⟹ xs!a = (xs@ys)!a


index_prop3

    size (concat (map (λx. f x y # map (f x) ys) xs)) = size xs * size (y#ys)


list_comp_index

    x_ind < size xs ⟹ y_ind < size ys ⟹ [f x y. x ← xs, y ← ys] ! (x_ind * size ys + y_ind) = f (xs ! x_ind) (ys ! y_ind)


interleave_ind_comp

    x_ind<size xs ⟹ y_ind<size ys ⟹ [path_m path_n. path_m ← xs, path_n ← ys] ! ((x_ind* (size ys))+y_ind) = (xs ! x_ind) (ys ! y_ind)


    x_ind < size xs ⟹ y_ind < size ys ⟹ [path_m path_n. path_m ← xs, path_n ← ys] ! ((x_ind* (size ys))+y_ind) = [path_m path_n. path_m ← ys, path_n ← xs] ! ((y_ind* (size xs))+x_ind)


all_elements_have_permutation

    x_ind < size xs ⟹ y_ind < size ys ⟹ [path_m path_n. path_m ← xs, path_n ← ys] ! ((x_ind* (size ys))+y_ind) ∈ set (permutations ([path_m path_n. path_m ← ys, path_n ← xs] ! ((y_ind* (size xs))+x_ind)))


perm_prop1

    xs ∈ set (permutations xs’) ⟹ ys ∈ set (permutations ys’) ⟹ xs@ys ∈ set (permutations (xs’@ys’))


is_perm

    size xy = sx * sy ⟹ [xy ! ((x_ind*sy)+y_ind). x_ind ← [0..<sx], y_ind ← [0..<sy]] ∈ set (permutations xy)


is_perm2

    size xy = size xs * size ys ⟹ [xy ! ((x_ind*(size ys))+y_ind). x_ind ← [0..<size xs], y_ind ← [0..<size ys]] ∈ set (permutations xy)


index_prop4

    i < size xs * size ys ⟹ concat (map (λx. map (f x) ys) xs) ! i = f (xs ! (i div length ys)) (ys ! (i mod length ys))


index_prop5

    concat (map (λx. map (f x) ys) xs) = [f (xs ! (i div length ys)) (ys ! (i mod length ys)). i ← [0..<size xs * size ys]]


perm_prop2

    [ ] ∈ set (permutations xy) ⟹ xy = [ ]


perm_prop5

    concat (map (λy. map (λx. f x y) [x]) (ys)) @ concat (map (λy. map (λx. f x y) xs) (ys)) ∈ set (permutations (concat (map (λy. map (λx. f x y) (x # xs)) (ys))))


perm_prop3

    [f x y. x ← xs, y ← ys] ∈ set (permutations xy) ⟹ [f x y. y ← ys, x ← xs] ∈ set (permutations xy)


is_perm4

    size xy = sx * sy ⟹ [xy ! ((x_ind*sy)+y_ind). y_ind ← [0..<sy], x_ind ← [0..<sx]] ∈ set (permutations xy)


perm_exists

    xy = [path_m path_n. path_m ← xs, path_n ← ys] ⟹ yx = [path_m path_n. path_m ← ys, path_n ← xs] ⟹ ∃xy’. xy’ ∈ set (permutations xy) ∧ (∀t∈set (zip xy’ yx). fst t ∈ set (permutations (snd t)))


is_permutation

    (xs ys) ∈ set (permutations (ys xs))


t4

    size (xs ys) = size (ys xs)


inter_prop1

    xs ≠ [ ] ⟹ interleave xs ys ≠ [ ]


perm_is_equal

    xs ∈ set (permutations ys) ⟹ evaluate xs = evaluate ys


    evaluate (xs ys) = evaluate (ys xs)


CNF_concurrency.thy

    (a@b)∥c =(a∥c)@(b∥c)


fact_eq

    factorial n = fact n


factorial_mod_product

    factorial (a + b) mod (factorial a * factorial b) = (0::nat)


factorial_bound

    factorial n > 0


simp_div

    a mod b = 0 ⟹ c mod b = 0 ⟹ (a::nat) div b + c div b = (a + c) div b


exits_mulit

    ∃t::nat. n*t=m ⟹ m mod n = 0


    nmb_interleavings_pre (nmb_interleavings_pre x y) z = nmb_interleavings_pre x (nmb_interleavings_pre y z)


number_interleav

    length (xs ys) = nmb_interleavings xs ys


monoton_fact

    a < b ⟹ factorial a < factorial b


interleave_size

    size xs * size ys < size (xs ys)


list_comp_size

    size [f path_m path_n. path_m ← xs, path_n ← ys] > size xs * size ys


interleav_lower_bound

    size (xs ys) > 1


concat_prop

    ∀x ∈ set xs. size x > 1 ⟹ size (concat xs) > size xs


conc_size

    size xs * size ys < size (xs ys)


size_one1

    size (xs ys) = 1 ⟹ size xs = 1


size_one2

    size (xs ys) = 1 ⟹ size ys = 1


sum_1

    size (concat xs) = sum [size x. x←xs]


path_decomp

    path ∈ set (p q) ⟹ ∃path_p path_q. path_p ∈ set p ∧ path_q ∈ set q ∧ path ∈ set (path_p path_q)


path_decomp2

    path_p ∈ set p ⟹ path_q ∈ set q ⟹ path ∈ set (path_p path_q) ⟹ path ∈ set (p q)


inter_leav1

    (p#path) ∈ set ((x#xs) (y#ys)) ⟹ ((p=x) ∧ path ∈ set (xs (y#ys))) ∨ ((p=y) ∧ path ∈ set ((x#xs) (ys)))


inter_leav2

    ((p=y) ∧ path ∈ set ((x#xs) (ys))) ⟹ (p#path) ∈ set ((x#xs) (y#ys))


inter_leav3

    ((p=x) ∧ path ∈ set (xs (y#ys))) ⟹ (p#path) ∈ set ((x#xs) (y#ys))


conc_lem1

    set (xs ys) = ⋃ {set (path_x path_y) path_x path_y. path_x ∈ set xs ∧ path_y ∈ set ys}

    set ((x#xs) ys) = set ([x]∥ys) ∪ set (xs∥ys)


assoc_1

    set (([x] [y]) [z]) ⊆ set ([x] ([y] [z]))


assoc_2

    set ([x] ([y] [z])) ⊆ set (([x] [y]) [z])


assoc_3

    set (([x] [y]) [z]) ⊆ set (((x#xs) (y#ys)) (z#zs))


assoc_4

    set ([x] ([y] [z])) ⊆ set ((x#xs) ((y#ys) (z#zs)))


assoc_5

    set xs = set xs’ ⟹ set ys = set ys’ ⟹ set (xs ys) = set (xs’ ys’)


assoc_6

    y ∈ set ys ⟹ x ∈ set xs ⟹ set ((x#xs) (y#ys)) = set ((xs) (ys))


assoc_7

    set ((xs ys) zs) ⊆ set (xs (ys zs))


assoc_8

    set (xs (ys zs)) ⊆ set ((xs ys) zs)


assoc_9

    set (xs (ys zs)) = set ((xs ys) zs)


inter_size

    size (x y) > 0” apply (cases “x=[ ]


inter_size2

    size (x y) = 1 ⟹ size x = 0 ∨ size y = 0


inter_size3

    size x = 0 ∨ size y = 0 ⟹ size (x y) = 1


interleaving_lemma

    size ([x] [y]) = nmb_interleavings_pre (size x) (size y)


inter_size4

    size (xs ys) = 1 ⟹ size xs = 1 ∨ size ys = 1


conc_prop

    xs [[ ]] = xs


conc_prop2

    [[ ]] xs = xs


assoc_10

    size (xs (ys zs)) = 1 ⟹ size ((xs ys) zs) = 1


assoc_11

    size ((xs ys) zs) = 1 ⟹ size (xs (ys zs)) = 1


assoc_12

    size (xs (ys zs)) = 1 ≡ size ((xs ys) zs) = 1


assoc_cnf1

    equal_cnf ((xs ys) zs) (xs (ys zs))


assoc_cnf

    evaluate ((xs ys) zs) = evaluate (xs (ys zs))


cnf_prop

    xs ≠ [ ] ⟹ evaluate [x#xs] C = x ; (evaluate [xs] C)


cnf_prop2

    xs ≠ [ ] ⟹ evaluate [xs@[x]] C = (evaluate [xs] C) ; x


restrict_cnf1

    D ⊆ C ⟹ evaluate ([x] / C) D = (evaluate [x] D) / C


restr_distrib

    a / C b / C = (a b) / C


restrict_cnf

    D ⊆ C ⟹ evaluate (xs / C) D = (evaluate xs D) / C


corestrict_cnf1

    D ⊆ C ⟹ evaluate ([x] C) D = (evaluate [x] D) C


corestrict_cnf

    D ⊆ C ⟹ evaluate (xs C) D= (evaluate xs D) C


conc_prop1

    set (xs ys) ⊆ set (xs (y#ys))


conc_prop3

    set (xs ys) ⊆ set (xs (ys zs))


conc_prop4

    set (xs (ys zs)) = set (xs (zs ys))


conc_choice1_1

    set (xs (ys zs)) = set ((xs ys) (xs zs))


choice_size1

    size (xs (ys zs)) = 1 ⟹ size ((xs ys) (xs zs)) = 1


choice_size2

    size ((xs ys) (xs zs)) = 1 ⟹ size (xs (ys zs)) = 1


Conc_choice1_1

    equal_cnf ((xs ys) (xs zs)) (xs (ys zs))


Conc_choice1_

    evaluate ((xs ys) (xs zs)) = evaluate (xs (ys zs))


conc_prop5

    set (xs ys) ⊆ set ((x#xs) ys)


conc_prop6

    set (xs ys) ⊆ set ((xs zs) ys)


conc_prop7

    set ((zs xs) ys) = set ((xs zs) ys)


conc_choice2_1

    set ((xs ys) zs) = set ((xs zs) (ys zs))


choice_size3

    size ((xs ys) zs) = 1 ⟹ size ((xs zs) (ys zs)) = 1


choice_size4

    size ((xs zs) (ys zs)) = 1 ⟹ size ((xs ys) zs) = 1


Conc_choice2_1

    equal_cnf ((xs zs) (ys zs)) ((xs ys) zs)


Conc_choice2_

    evaluate ((xs zs) (ys zs)) = evaluate ((xs ys) zs)


eval_specialize

    evaluate ys C evaluate (y # ys) C


eval_specialize2

    evaluate [y] C evaluate (y # ys) C


eval_specialize3

    set xs ⊆ set [y] ⟹ evaluate xs C evaluate [y] C


eval_specialize4

    set [x] ⊆ set ys ⟹ evaluate [x] C evaluate ys C


eval_specialize5

    size xs > 1 ⟹ equal_cnf xs zs ⟹ evaluate xs C = evaluate [ ] C evaluate zs C


eval_specialize6

    size (ys @ zs) > 1 ⟹ evaluate ys C evaluate zs C = evaluate (ys zs) C


eval_specialize7

    size xs ≠ 1 ⟹ equal_cnf xs (ys zs) ⟹ evaluate xs C = evaluate ys C evaluate zs C


eval_specialize8

    evaluate [x. x ← xs, f x] C evaluate xs C


eval_specialize9

    evaluate [x. x ← (x#xx#xs), f x] C evaluate [x. x ← x#xx#xs, ¬ f x] C = (evaluate [x] C evaluate [xx] C) (evaluate [x. x ← (xs), f x] C evaluate [x. x ← xs, ¬ f x] C)


eval_specialize10

    (evaluate [x] C evaluate [xx] C) (evaluate [x. x ← (xs), f x] C evaluate [x. x ← xs, ¬ f x] C) = (evaluate [x] C evaluate [xx] C) (evaluate xs C)


eval_specialize11

    size xs > 1 ⟹ evaluate [x. x ← xs, f x] C evaluate [x. x ← xs, ¬ f x] C = evaluate xs C


eval_specialize12

    set xs ⊆ set ys ⟹ evaluate xs C⊆ evaluate ys C


subset1

    set (p ; xs) ⊆ set (p ; (x#xs))


subset2

    set (xs ; p) ⊆ set ((x#xs) ; p)


subset3

    set (p xs) ⊆ set (p (x#xs))


subset4

    set (xs p) ⊆ set ((x#xs) p)


subset5

    set q ⊆ set q’ ⟹ set (p ; q) ⊆ set (p ; q’)


subset6

    set q ⊆ set q’ ⟹ set (q ; p) ⊆ set (q’ ; p)


subset7

    set q ⊆ set q’ ⟹ set (p q) ⊆ set (p q’)


subset8

    set q ⊆ set q’ ⟹ set (q p) ⊆ set (q’ p)


subset9

    set q ⊆ set q’ ⟹ set (p q) ⊆ set (p q’)


subset10

    set q ⊆ set q’ ⟹ set (q p) ⊆ set (q’ p)


interleav_prop

    ps @ rs ∈ set (ps rs)


prop5

    set (map (λxs. xs @ [p]) (ps (qs @ [q]))) = {tr @ [p] tr. tr ∈ set (ps (qs @ [q]))}

prop6

    set (map (λxs. xs @ [q]) ((ps @ [p]) qs )) = {tr @ [q] tr. tr ∈ set ((ps @ [p]) qs)}

prop3_1

    [x] ys = insert_all x ys


prop3_2

    ys [x] = rev (insert_all x ys)


prop3_3

    set ([x] (y#ys)) = {x#y#ys} ∪ {y#x#ys} ∪ ((#) y) ` set ([x] ys)


prop3_4

    set ([x] (ys@[y])) = {ys@[x,y]} ∪ {ys@[y,x]} ∪ (λtr. tr@[y]) ` set ([x] ys)


prop3_5

    set ([x] rev (y#ys)) = {(rev ys)@[x,y]} ∪ {(rev ys)@[y,x]} ∪ (λtr. tr@[y]) ` set ([x] (rev ys))


prop3_6

    {rev tr tr. tr ∈ set ([x] (ys))} = set ([x] rev ys)

prop3_7

    rev ` set ([x] ys) = set ([x] rev ys)


prop3_8

    (λtr. tr @ [y]) ` set ([x] ys) ⊆ set ([x] (ys @ [y]))


prop3_9

    tr ∈ set ([x] rev ys) ⟹ tr @ [y] ∈ set ([x] (rev ys @ [y]))


prop3_10

    (map (λzs. zs@[y]) (insert_all x ys)) @ [ys@[y,x]] = insert_all x (ys@[y])


prop3_10_1

    map (λtr. tr @ [y]) ([x] ys) @ [ys@[y,x]] = insert_all x (ys@[y])


prop3_11

    xa ∈ set ([x] (rev ys @ [y])) ⟹ xa ∉ (λtr. tr @ [y]) ` set ([x] rev ys) ⟹ xa = rev ys @ [y, x]


prop3_12

    x≠y ⟹ set (map ((#) y) ((x#xs) ys)) ∩ set (map ((#) x) (xs (y#ys))) = {}


prop3_13

    x≠y ⟹ set (map ((#) x) (xs (y#ys))) = set ((x#xs) (y#ys)) - set (map ((#) y) ((x#xs) ys))


prop3_14

    (x#xs) (x#ys) = map ((#) x) ((xs (x#ys)) @ ((x#xs) ys))


prop3_15

    set [(xs @ [x, y])] ∪ (λtr. tr @ [x]) ` set ((xs [y])) = set (((xs @ [x]) [y]))


prop3_16

    set (map (λtr. tr@[y]) (rev (x#xs) rev ys)) ∪ set (map (λtr. tr@[x]) (rev xs rev (y#ys))) = set (rev (x # xs) rev (y # ys))


prop3

    set (map rev (xs ys)) = set (rev xs rev ys)


prop4

    set ((ps @ [p]) (qs @ [q])) = {tr @ [p] tr. tr ∈ set (ps (qs @ [q]))} ∪ {tr @ [q] tr. tr ∈ set ((ps @ [p]) qs)}

prop7

    set ((ps@[p]) (qs@[q])) = set (map (λxs. xs@[p]) (ps (qs@[q])) @ map (λxs. xs@[q]) ((ps@[p]) qs))


prop8

    xs ∈ set ys ⟹ xs@[x] ∈ set (map (λt. t@[x]) ys)


prop9

    xs ∈ set (p q) ⟹ xs @ r ∈ set (p (q @ r))


prop9_1

    xs ∈ set ((p r)) ⟹ q @ xs ∈ set (p (q @ r))


prop10

    set ([p] [q] ; [r]) ⊆ set ([p] ([q] ; [r]))


prop10_1

    set ([p] [r] ; [q]) ⊆ set (([p] ; [q]) [r])


prop10_2

    set ([q] ; [p] [r]) ⊆ set ([p] ([q] ; [r]))


prop10_3

    set ([p] ; [q] [r]) ⊆ set (([p] ; [q]) [r])


inter1

    set ((ps qs) ; (rs vs)) ⊆ set ((ps @ rs) (qs @ vs))


prop10_3_1

    set ([p] [q] ; [r] [v]) ⊆ set (([p] ; [r]) ([q] ; [v]))


prop10_4

    set ([p] [q] ; [r] vs) ⊆ set (([p] ; [r]) ([q] ; vs))


prop11

    set ([p] qs ; [r]) ⊆ set ([p] (qs ; [r]))


prop12

    set (([p] rs) ; [q]) ⊆ set (([p] ; [q]) rs)


prop13

    set ([q] ; [p] rs) ⊆ set ([p] ([q] ; rs))


prop14

    set ([p] ; qs [r]) ⊆ set (([p] ; qs) [r])


prop15

    set ([p] ([q]) ; rs s) ⊆ set (([p] ; rs) ([q] ; s))


subset12

    set (ps q ; [r]) ⊆ set (ps (q ; [r]))


subset13

    set ((ps r) ; [q]) ⊆ set ((ps ; [q]) r)


subset14

    set ([q] ; ps r) ⊆ set (ps ([q] ; r))


subset15

    set ([p] ; q rs) ⊆ set (([p] ; q) rs)


subset16

    set ([p] qs ; r s) ⊆ set (([p] ; r) (qs ; s))


Conc_composeright_1

    set ((p q) ; rs) ⊆ set (p (q ; rs))


Conc_composeright1_1

    set ((p r) ; qs) ⊆ set ((p ; qs) r)


Conc_composeleft1_1

    set (qs ; (p r)) ⊆ set (p (qs ; r))


Conc_composeright_2

    set (ps ; (q r)) ⊆ set ((ps ; q) r)


Conc_composeleft

    evaluate ((p q) ; r) C evaluate (p (q ; r)) C


Conc_composeleftright

    evaluate (q ; (p r)) C evaluate (p (q ; r)) C


Conc_composeright

    evaluate (p ; (q r)) C evaluate ((p ; q) r) C


Conc_composerightleft

    evaluate ((p r) ; q) C evaluate ((p ; q) r) C


Conc_composegeneral

    set (([p] ; [q]) ([u] ; [v])) ⊆ set (([p] ; [u]) ([q] ; [v]))


Conc_composegeneral

    set (([p] ; [u]) ([q] ; [v])) ⊆ set (([p] ; [q]) ([u] ; [v]))


Conc_composegeneral

    set ((p ; q) (u ; v)) ⊆ set ((p ; u) (q ; v))


Conc_composegeneral_1

    set ((ps q) ; (r s)) ⊆ set ((ps ; r) (q ; s))


Conc_composegeneral

    evaluate ((p q) ; (r s)) C evaluate ((p ; r) (q ; s)) C


    foldl (+) (b::nat) xs = b + foldl (+) 0 xs


cnf_prop1

    cnf_concurrency2 [[x]] [[y]] C = evaluate ([x] [y]) C


    is_rounded a ⟹ (a ; b) (a ; c) = a ; (b c)


cnf2_prop

    cnf_feasible ([y]#ys) ⟹ complete_cnf_state ([y]#ys) ⊆ C ⟹ (map ((λxs. Concat xs C) ∘ (#) y) (ys)) y ; (map (λxs. Concat xs C) (ys))


cnf2_prop2

    cnf_feasible xs ⟹ is_feasible x ⟹ cnf_feasible (map ((#) x) (xs))


cnf2_prop3

    cnf_feasible xs ⟹ cnf_feasible ys ⟹ cnf_feasible (xs@ys)


cnf2_prop4

    all_feasible (xs@ys) ⟹ cnf_feasible (xs ys)


cnf2_prop5

    xs ≠ [ ] ⟹ complete_cnf_state (map ((#) x) xs) = S x ∪ complete_cnf_state xs


cnf2_prop6

    complete_cnf_state xs ∪ complete_cnf_state ys = complete_cnf_state (xs@ys)


cnf2_prop7

    complete_state xs ∪ complete_state ys = complete_cnf_state (xs ys)


cnf2_prop8

    S y ⊆ C ⟹ is_feasible y ⟹ (map ((λxs. Concat xs C) ∘ (#) y) ys) (map (λxs. y ; Concat xs C) ys)


cnf2_prop9

     (map (λxs. y ; Concat xs C) xs) y ; (map (λxs. Concat xs C) xs)


cnf2_prop10

    is_feasible y ⟹ S y ⊆ C ⟹ y ; (map (λxs. Concat xs C) ([x] ys)) (map ((λxs. Concat xs C) ∘ (#) y) ([x] ys))


cnf2_prop11

    size xs = size ys ⟹ ∀z ∈ set (zip xs ys). fst z snd z ⟹ xs ys


cnf2_prop12

    is_feasible x ⟹ S x ⊆ C ⟹ evaluate (map ((#) x) xs) C x ; evaluate xs C


cnf_prop5

    all_feasible (xs@ys) ⟹ complete_state (xs@ys) ⊆ C ⟹ cnf_concurrency2 [xs] [ys] C evaluate (xs ys) C


cnf_prop3

    all_feasible (x#ys) ⟹ complete_state (x#ys) ⊆ C ⟹ cnf_concurrency2 [[x]] [ys] C evaluate ([x] ys) C


cnf2_prop13

    all_feasible (x#xs@[y]) ⟹ complete_state (x#xs@[y]) ⊆ C ⟹ x ; cnf_concurrency2 [xs] [[y]] C evaluate (map ((#) x) (xs [y])) C


cnf2_prop14

    all_feasible (xs@ys) ⟹ complete_state (xs@ys) ⊆ C ⟹ cnf_concurrency2 [xs] [ys] C evaluate ([xs] [ys]) C


cnf2_prop15

    cnf_feasible (x#ys) ⟹ complete_cnf_state (x#ys) ⊆ C ⟹ cnf_concurrency2 [x] ys C evaluate(concat (map (() x) ys)) C


cnf2_prop16

    cnf_feasible (xs @ ys) ⟹ cnf_feasible ys


cnf2_prop17

    cnf_feasible (xs @ ys) ⟹ cnf_feasible xs


    cnf_feasible (xs @ ys) ⟹ complete_cnf_state (xs @ ys) ⊆ C ⟹ cnf_concurrency2 xs ys C evaluate (xs ys) C


Complex_operation_interactions.thy

cond_distrib2_1

    GC [(C1, p), (C2, q)] / D = GC [((D ∩ C1), p), ((D ∩ C2), q)]


Cond_distrib2_2

    GC [(C1, p), (C2, q)] / D GC [((D ∩ C1), p), ((D ∩ C2), q)]


restriction_ite

    (ITE C a b) / D = (ITE C (a/D) (b/D))


restriction_ite

    (ITE C a b) / D = (ITE C (a/D) (b/D))


restriction_ite

    (ITE C a b) / D (ITE C (a/D) (b/D))


restriction_fixed_repetition_1

    0<n ⟹ (pn + 1) / C (p / C) ; (pn)


restriction_fixed_repetition_2

    is_feasible p ⟹ (pn) / C (Skip (S p) / C) ; (pn)


restriction_fixed_repetition_3

    (pn) / C (Skip C) ; (pn)


    loop p s f / C Skip C ; loop p s f


cond_distrib1_gc_1

    GC [(C1, p1), (C2, (p2 p3))] = (GC [(C1, p1), (C2, p2)]) (GC [(C1, p1), (C2, p3)])


cond_distrib1_gc_2

    GC [(C1, p1), (C2, (p2 p3))] (GC [(C1, p1), (C2, p2)]) (GC [(C1, p1), (C2, p3)])


cond_distrib1_gc_3

    GC [(C1, (p1 p3)), (C2, p2)] = GC [(C1, p1), ( C2, p2)] GC [(C1, p3), ( C2, p2)]


cond_distrib1_gc_4

    GC [(C1, (p1 p3)), ( C2, p2)] GC [(C1, p1), ( C2, p2)] GC [(C1, p3), ( C2, p2)]


cond_distrib1_ite_1

    (ITE C p1 (p2 p3)) = (ITE C p1 p2) (ITE C p1 p3)


cond_distrib1_ite_2

    (ITE C p1 (p2 p3)) (ITE C p1 p2) (ITE C p1 p3)


cond_distrib1_ite_3

    (ITE C (p1 p2) p3) = (ITE C p1 p3) (ITE C p2 p3)


cond_distrib1_ite_4

    (ITE C (p1 p2) p3) (ITE C p1 p3) (ITE C p2 p3)


guard_ifthenelse

    ITE C p1 p2 = GC [(C, p1), ((-C), p2)]


until_def_lemma

    until_loop a C b n a ; (loop (b/(-C)) 0 n)∖C


Fixed_repetition.thy

state_space_is_same

    S p = S (p «/sup>/a> n)


state_space_is_same2

    State (pn) = S p


fixed_pre_decreases

    Pre (pn + 1) ⊆ Pre (pn)


fixed_rep_one_1

    p1 p / (Pre p)


fixed_rep_one_2

    is_feasible p ⟹ p1 p


fixed_rep_one_3

    x ; p1 x ; p


fixed_rep_two_1

    p2 p ; p


fixed_rep_decomp_front

    0<i ⟹ pi + 1 p ; pi


fixed_rep_decomp_back

    is_feasible p ⟹ pi + 1 pi ; p


fixed_rep_feasibility

    is_feasible p ⟹ is_feasible (pn)


fixed_rep_prop_2

    pi + 1 pi ; p


range_decreases_fixed_repetition

    0 < n ⟹ Range_p (x «/sup>/a> n) ⊆ Range_p x


range_decreases_fixed_repetition_2

    0 < n ⟹ Range_p (x «/sup>/a> n + 1) ⊆ Range_p (x «/sup>/a> n)


fixed_prop

    x1 = Skip (Pre x) ; x


skip_choice

    Skip (Pre x) ; x Skip (Pre y) ; y = Skip (Pre x ∪ Pre y) ; (x y)


comp_prop

    Range_p a ∩ Pre d = {} ⟹ Range_p c ∩ Pre b = {} ⟹ a ; b c ; d = (a c) ; (b d)


arbitrary_repetition_simplification

    0<n ⟹ all_feasible [x,y] ⟹ Range_p x ∩ Pre y = {} ⟹ Range_p y ∩ Pre x = {} ⟹ xn yn = (x y)n


arbitrary_repetition_simplification2

    0<n ⟹ all_feasible [x,y] ⟹ Range_p x ∩ Pre y = {} ⟹ Range_p y ∩ Pre x = {} ⟹ xn yn (x y)n


equality_is_maintained_by_fixed_repetition

    p1 = p2 ⟹ p1n = p2n


equiv_is_maintained_by_fixed_repetition

    0<n ⟹ all_feasible [p1, p2] ⟹ p1 p2 ⟹ p1n p2n


skip_compose_r_of_fixed_rep_1

    is_feasible p ⟹ pn pn ; Skip (S p)


skip_compose_l_of_fixed_rep_1

    pn Skip (S p) ; pn


fail_stays_fail_fixed

    pn Fail {} ⟹ pn + 1 Fail {}


repetition_fail

    i<j ⟹ pi Fail {} ⟹ pj Fail {}


fix_rep_prop1

    0<i ⟹ pi = Skip (S p) / (Pre p) ; Concat [p . t ← [1 .. int i]] (S p)


fix_rep_prop2

    pi = Concat ((Skip (S p) / (Pre p))#[p . t ← [1 .. int i]]) (S p)


Guarded_conditional.thy

gc_S

    S (GC ((C,p)#xs)) = S p ∪ S (GC xs)


gc_S_1

    S (GC (xs)) = complete_state ([snd t. t ← (xs)])


cond_helper_1

    GC (x#xs) = GC (xs @ [x])


cond_helper_2

    xs≠[ ] ⟹ GC (x#xs) = GC [x] GC xs


cond_helper_3

    a ≠[ ] ⟹ b≠ [ ] ⟹ GC (a@b) = GC a GC b


cond_commute

    xs ∈ set (permutations ys) ⟹ GC xs = GC ys


cond_sub1

    D1 ⊆ C1 ⟹ D2 ⊆ C2 ⟹ (GC [(D1, p), (D2, q)]) (GC [(C1, p), (C2, q)])


property_on_gc_3

    all_feasible [p1, p2] ⟹ GC [(C1, p1), (C2, p2)] p1 / C1


property_on_gc_3_1

    weakens (GC [(C1, p1), (C2, p2)]) (p1 / C1)


property_on_gc_3_2

    strengthens (p1 / C1) (GC [(C1, p1), (C2, p2)])


cond_sub4

    (p1 / C1) (GC [(C1, p1), (C2, p2)])


refinement_safety_gc_1

    all_feasible [p, q] ⟹ D1 ⊆ C1 ⟹ D2 ⊆ C2GC [(D1, p), (D2, q)] GC [(C1, p), (C2, q)]


refinement_safety_gc_2

    all_feasible [p, q] ⟹ D1 ⊆ C1 ⟹ D2 ⊆ C2GC [(C1, p), (C2, q)] GC [(D1, p), (D2, q)]


refinement_safety_gc_weakens

    D1 ⊆ C1 ⟹ D2 ⊆ C2weakens (GC [(C1, p), (C2, q)]) (GC [(D1, p), (D2, q)])


refinement_safety_gc_strengthens

    D1 ⊆ C1 ⟹ D2 ⊆ C2strengthens (GC [(D1, p), (D2, q)]) (GC [(C1, p), (C2, q)])


cond_refine1

    D1 ⊆ C1 ⟹ D2 ⊆ C2 ⟹ (GC [(D1, p), (D2, q)]) (GC [(C1, p), (C2, q)])


cond_refine2

    q1 p1 ⟹ q2 p2GC [(C, q1), (C, q2)] GC [(C, p1), (C, p2)]


refinement_safety_gc_3

    all_feasible [p1, p2, q1, q2] ⟹ strengthens q1 p2strengthens q2 p1 ⟹ q1 p1 ⟹ q2 p2GC [(C, q1), (C, q2)] GC [(C, p1), (C, p2)]


refinement_safety_gc_4

    all_feasible [p1, p2, q1, q2] ⟹ independent q1 p2independent q2 p1 ⟹ q1 p1 ⟹ q2 p2GC [(C, q1), (C, q2)] GC [(C, p1), (C, p2)]


cond_refine4

    GC [(C1, p1), (C2, p2)] p1 / C1


cond_sub2

    q1 p1 ⟹ q2 p2GC [(C, q1), (C, q2)] GC [(C, p1), (C, p2)]


cond_distrib

    GC xs / C GC [(fst t ∩ C, snd t) . t ← xs]


GC_prop_22

    a GC (x#xs) = a (GC [x] GC xs)


gc_prop1

    S (snd x) ⊆ complete_state (map snd xs) ⟹ fst x = FALSE ⟹ 1 < length xs ⟹ GC (x # xs) = GC xs


gc_prop2

    S (snd x) ⊆ complete_state (map snd (a@b)) ⟹ fst x = FALSE ⟹ size (a@b) > 1 ⟹ GC (a@x#b) = GC(a@b)


if_false2

    fst x = FALSEGC (a@x#b) GC(a@b)


gc_prop4

    S (snd x) ⊆ complete_state (map snd (a@b)) ⟹ fst x = FALSE ⟹ size (a@b) = 0 ⟹ GC (a@x#b) = GC(a@b)


fail_choice

    S q ⊆ S p ⟹ q Fail {} ⟹ q p = Fail {} p


gc_prop5

    S (snd x) ⊆ complete_state (map snd (a@b)) ⟹ fst x = FALSE ⟹ size (a@b) = 1 ⟹ GC (a@x#b) = Fail {} GC(a@b)


cond_one

    GC [(C,p)] = p/C


gc_prop6

    x / C GC ((C,x) # xs)


gc_prop7

    GC a GC (a@b)


cond_sub3

    (C, x) ∈ set (xs) ⟹ x/C GC xs


If_then_else.thy

ite_S

    S (ITE C q1 q2) = S q1S q2


cond_swap

    ITE C p1 p2 = ITE (-C) p2 p1


property_on_ite_2

    Pre (p / C) = Pre (ITE C p (Skip (S p)))


cond_refine3

    q1 p1 ⟹ q2 p2ITE C q1 q2 ITE C p1 p2


cond_refine4

    q1 p1 ⟹ q2 p2ITE C q1 q2 ITE C p1 p2


Non_atomic_concurrency.thy

non_atomic_prop1

    [ ] x = x


non_atomic_prop2

    ((a # xs) x) a ; (xs x) Concat (x#a#xs)


compose_distrib

    (b (a ; c a ; d)) = (b a ; (c d))


concur_two

    [a]∥b = a ; b b ; a


concur_commute

    [a]∥b = ([b]∥a)


compose_distrib2

    ∀x ∈ set xs. x ≠ [ ] ⟹ xs ≠ [ ] ⟹ b [a ; (Concat t). t ← xs] = b a ;⋃ [(Concat t). t ← xs]


concur_recursive

    ((a # xs) x) = a ; (xs x) Concat (x#a#xs)


non_atomic_conc_S

    S (xs∥x) = complete_state (x#xs)


concor_three_1

    [p1, p2] q = ((q ; p1) ; p2 ((p1 ; q) ; p2)) ((p1 ; p2) ; q)


concor_three_2

    [p1, p2] q = ((q ; p1) ; p2 ((p1 ; q) ; p2)) ((p1 ; p2) ; q)


concor_three_3

    [p1, p2] q ((q ; p1) ; p2 ((p1 ; q) ; p2)) ((p1 ; p2) ; q)


Concat_feasible

    all_feasible xs ⟹ is_feasible (Concat xs)


Choice_feasible

    all_feasible xs ⟹ is_feasible ( xs)


all_feasible_prop

    all_feasible xs ⟹ x ∈ set xs ⟹ is_feasible x


all_feasible_prop_1

    ∀x ∈ set xs. is_feasible x ≡ all_feasible xs


all_feasible_prop_2

    xs ∈ set (permutations ys) ⟹ all_feasible ys ⟹ all_feasible xs


non_atomic_conc_feasible_preserving

    all_feasible (x#xs) ⟹ is_feasible (xs x)


atomic_conc_refinement_safe

    q1 p1 ⟹ q2 p2 ⟹ q3 p3 ⟹ ([q1, q2] q3) ([p1, p2] p3)


    ((ys@[x])@xs) G q (ys@([x]@xs)) G q


atomic_restrict_1

    (xs x) / C [Concat t / C. t ← insert_all x xs]


concur_restrict

    (xs x) / C = [Concat t / C. t ← insert_all x xs]


atomic_corestrict_1

    (xs x) C [Concat t C. t ← insert_all x xs]


equiv_list_prop_2

    equiv_list xs ys ⟹ xs ys


equiv_list_prop_1

    ∀a ∈ set xs. a ≠ [ ] ⟹ equiv_list [Concat t / C. t ← xs] [Concat (hd t / C # tl t). t ← xs]


equiv_list_prop_3

    ∀a ∈ set xs. a ≠ [ ] ⟹ equiv_list [Concat t C. t ← xs] [Concat (butlast t @ [(last t)∖ C]). t ← xs]


concur_restrict

    (xs x) / C [Concat (hd t/C#tl t). t ← insert_all x xs]


concur_corestrict

    (xs x) C [Concat (butlast t @ [(last t)∖ C]). t ← insert_all x xs]


concur_specialize1

    p ; q ([p] q)


non_atomic_specialize

    ys ∈ set (insert_all x xs) ⟹ (Concat ys) (xs x)


commute_compose

    commute_programs3 a b ⟹ [a] b a ; b


concur_distrib1

    xs∥(b c) (xs∥b) (xs∥c)


concur_choice1

    [a∪b]∥(c) = ([a]∥c) ([b]∥c)


concur_choice2

    xs∥(b c) = (xs∥b) (xs∥c)


concur_specialize2

    ([Concat xs] x) (xs x)


Permutations.thy

simp_2

    ∀x1 x2 x3. f (f x1 x2) x3 = f x1 (f x2 x3) ⟹ foldl f (f a x) xs = f a (foldl f x xs)


fold_composition_assoc

    foldl (;) x (as @ [a]) = (foldl (;) x as) ; a


S_foldl_composition

    S (foldl (;) x as) = ⋃ (S ` (set (x # as)))


main_theorem

    S (foldl (;) x (a # as)) = S ((foldl (;) x as) ; a)


skip_fold_complete_state

    S (Skip (complete_state (x # xs))) ∪ S x ∪ S (foldl (;) x xs) = complete_state (x # xs) ∪ S x ∪ complete_state xs


simp_5

    S (foldl (;) (Skip (complete_state xs)) xs) = complete_state xs


simp_4_right

    S (foldl (;) (Skip (complete_state xs)) xs) ⊆ complete_state xs


fold_composition_state_inv

    S (fold (;) t b) = S (foldl (;) b t)


    S (fold (;) t (Skip (complete_state t))) = S (foldl (;) (Skip (complete_state t)) t)


permutation_fold_subset_complete_state

    t ∈ set (permutations xs) ⟹ S (fold (;) t (Skip (complete_state t))) ⊆ complete_state xs


state_composition

    x ∈ S a ⟹ x ∈ S (a ; b)


state_composition_1

    x ∈ S p ⟹ x ∈ S (foldl (;) p (xs))


state_composition_2

    x ∈ S a ⟹ x ∈ S (foldl (;) p (a#xs))


state_composition_3

    x ∈ S a ⟹ x ∈ S (foldl (;) p (ys@a#xs))


complete_state_subset

    complete_state xs ⊆ S (Skip (complete_state xs))


foldl_composition_preserves_state

    S p ⊆ S (foldl (;) p xs)


Union_prop_1

    ⋃ (set (xs@[x])) = x ∪ ⋃ (set xs)


Union_prop_2

    ⋃ (xs ∪ {x}) = x ∪ ⋃ xs


fold_comp_prop1

    xs ≠ [ ] ⟹ foldl (;) x xs = foldl (;) (x ; Skip (S x)) xs


fold_comp_prop2

    xs ≠ [ ] ⟹ foldl (;) x xs = foldl (;) (x ; Skip (complete_state (x#xs))) xs


fold_comp_prop3

    S (foldl (;) x xs) = complete_state (x # xs)


fold_comp_prop4

    xs ≠ [ ] ⟹ foldl (;) x xs = foldl (;) (x ; Skip (complete_state (xs))) xs


perm_prop_1

    (filter (p) xs) @ (filter (λx. ¬ p x) xs) ∈ set (permutations xs)


perm_prop_2

    xs ∈ set (permutations ys) ⟹ map p xs ∈ set (permutations (map p ys))


Until_loop.thy

until_conncetion

    until_loop a C b n = until_support a C b 0 n


until_decomposition

    until_loop a C b (n + 1) a ; ((b/(-C))n + 1 (loop (b/(-C)) 0 n)) C


until_decomposition_2

    until_loop a C b (n + 1) a ; ((b/(-C))n + 1) C until_loop a C b n


until_def_lemma_3

    until_loop a C b n a ; ((Skip (S (b/(-C))) / (Pre (b/(-C)))) (loop (b/(-C)) 1 n)) C


loop_choice1

    until_loop a C b n [a ; ((b / (- C))nat i)∖C. i ← [0..int n]]


loop_choice2

    Range_p (until_loop a C b n) = ⋃ (set [Range_p (a ; ((b / (- C))nat i)∖C). i ← [0..int n]])


until_loop_feasible

    all_feasible [a, b] ⟹ is_feasible (until_loop a C b n)


equiv_is_maintained_by_until_loop_2

    a1 a2 ⟹ b1 b2S b1 = S b2all_feasible [b1, b2] ⟹ until_loop a1 C b1 n until_loop a2 C b2 n


until_decom

    k<n ⟹ until_loop a C b n until_loop a C b n until_loop a C b k


range_until_loop_1

    m<n ⟹ x ∉ Range_p (until_loop a C b n) ⟹ x ∉ Range_p (until_loop a C b m)


range_until_loop_2

    m<n ⟹ x ∉ Range_p (until_loop a C b n) ⟹ x ∉ Range_p (until_support a C b s m)


loop_range

    Range_p (until_loop a C b n) ⊆ C


split_front

    until_loop (x ; a) C b n x ; until_loop a C b n


fail_until

    until_loop a C b (n + 1) Fail {} ⟹ until_loop a C b n Fail {}


fail_until_2

    k<n ⟹ until_loop a C b n Fail {} ⟹ until_loop a C b k Fail {}


loop_prop1

    S (loop (b/(-C)) 0 n) = S b


loop_prop2

    State (loop (b/(-C)) 0 n) = S b


loop_prop3

    S (until_loop a C b n) = S a ∪ S b


loop_prop4

    State (until_loop a C b n) = S (until_loop a C b n)


loop_prop5

    State (until_loop a C b n) = S a ∪ S b


loop_prop6

    until_loop (Skip D) FALSE (Skip D) n = Fail D


Until_support.thy

until_decomp_1

    until_support a C b 0 n until_support a C b 0 0 until_support a C b (0 + 1) n


until_decomp_2

    until_support a C b 0 (n + 1) until_support a C b 0 n until_support a C b (n + 1) (n + 1)


until_decomp_3

    s < f ⟹ until_support a C b s f until_support a C b s s until_support a C b (s + 1) f


until_decomp_4

    s < f ⟹ until_support a C b s (f + 1) until_support a C b (f + 1) (f + 1) until_support a C b s f


until_decomp_5

    0 < k ⟹ k < n ⟹ until_support a C b 0 n until_support a C b 0 k until_support a C b (k + 1) n


until_decomp_6

    s < k ⟹ k < f ⟹ until_support a C b s f until_support a C b s k until_support a C b (k + 1) f


until_decomp_7

    s = f ⟹ until_support a C b s f a ; ((b / (- C))f) C


until_support_feasible

    all_feasible [a, b] ⟹ is_feasible (until_support a C b s f)


equiv_is_maintained_by_until_support_1

    a1 a2 ⟹ b1 b2S b1 = S b2all_feasible [b1, b2] ⟹ until_support a1 C b1 s f until_support a2 C b2 s f


equiv_is_maintained_by_until_support_2

    a1 a2 ⟹ b1 b2 ⟹ 0<s ⟹ all_feasible [b1, b2] ⟹ until_support a1 C b1 s f until_support a2 C b2 s f


bad_index_is_fail_support

    f < s ⟹ until_support a C b s f Fail {}


bad_index_range_support

    f < s ⟹ Range_p (until_support a C b s f) = {}


until_support_decomp

    s<s’ ⟹ f’<f ⟹ until_support a C b s f until_support a C b s f until_support a C b s’ f’


Contract.thy

consequence_rule

    post1 ⊆ post2 ⟹ Pre2 ⊆ Pre1is_correct 〈a_specification=〈State=Pre1 ∪ Field post2, Pre=Pre1, post=post1〉, a_implementation=b〉 ⟹ is_correct 〈a_specification=〈State=Pre1 ∪ Field post2, Pre=Pre2, post=post2〉, a_implementation=b〉


post_charac_old

    is_correct 〈a_specification=s, a_implementation=b〉 ⟹ b sp (Pre s) ⊆ post s


pre_charac_old

    is_correct 〈a_specification=s, a_implementation=b〉 ⟹ Pre s ⊆ b wp (post s)


correct_program_1

    is_correct 〈a_specification=s, a_implementation=b〉 ⟹ Pre s ⊆ Pre b - Domain (post b - post s)


correct_program_2

    S s = S b ⟹ is_feasible b ⟹ Pre s ⊆ Pre b - Domain (post b - post s) ⟹ is_correct 〈a_specification=s, a_implementation=b〉


correct_program

    S s = S b ⟹ is_feasible b ⟹ is_correct 〈a_specification=s, a_implementation=b〉 = (Pre s ⊆ Pre b - Domain (post b - post s))


fail_false

    b sp FALSE = FALSE


false_fail

    is_feasible b ⟹ b wp FALSE = FALSE


    b wp FALSE = Pre b - Domain (post b)


fail_pre

    Fail S’ sp Pre’ = {}


sp_prop1

    p sp TRUE (S p) = post p


wp_prop1

    p wp TRUE (S p) = Pre p


    Havoc C sp pre = {(x,y). x ∈ pre ∧ x ∈ C ∧ y ∈ C}


    Havoc C sp pre = post (Havoc C) / pre


fail_post

    Fail S’ wp post’ = FALSE


sp_distrib

    b sp (p ∪ q) = b sp p ∪ b sp q


wp_distrib2

    (b wp p) ∪ (b wp q) ⊆ b wp (p ∪ q)


sanity

    q p ⟹ 〈a_specification=s, a_implementation=q〉 〈a_specification=s, a_implementation=p〉


mai_theorem_1

    is_feasible p ⟹ is_correct (MAI p)


state_feasible_1

    (∀s ∈ Pre p . is_trivial (post p) s ∨ is_relevant (post p) s) = is_feasible p


    (Infeas D) wp C = TRUE D


    (Infeas D) sp C = FALSE


    (Havoc D) sp C = (TRUE D) / C


    (Infeas D) sp C = FALSE


post_charac

    implements a b ⟹ a sp (Pre b) ⊆ post b


pre_charac

    implements i s ⟹ Pre s ⊆ i wp (post s)


Invariant.thy

invariant_disjoint_from_pre

    I ∩ (Pre p) = {} ⟹ is_invariant I p


false_is_invariant

    is_invariant FALSE p


equiv_inv

    p1 p2is_invariant I p1 = is_invariant I p2


invariant_relation_1

    is_invariant I p ⟹ is_invariant J p ⟹ is_invariant (I ∪ J) p


invariant_relation_2

    is_invariant I p ⟹ is_invariant J p ⟹ is_invariant (I ∩ J) p


invariant_refinement

    is_invariant I p1 ⟹ p2 p1is_invariant I (p2 / (Pre p1))


invariant_prop_specialize

    is_invariant I p1 ⟹ p2 p1is_invariant I (p2)


invariant_prop_2

    is_invariant I (Fail C)


invariant_prop_3

    C ⊆ I ⟹ is_invariant I (Havoc C)


invariant_prop_4

    is_invariant I (Skip C)


composition_invariant_preserve

    is_invariant I p1is_invariant I p2is_invariant I (p1 ; p2)


choice_invariant_preserve

    is_invariant I p1is_invariant I p2is_invariant I (p1 p2)


choice_invariant_preserve_2

    is_invariant I (p1 p2) ⟹ is_invariant I p1


choice_invariant_preserve_3

    is_invariant I (p1 p2) ⟹ is_invariant I p2


choice_invariant_preserve_4

    is_invariant I (p1 p2) = (is_invariant I p1is_invariant I p2)


restriction_invariant_preserve

    is_invariant I p ⟹ is_invariant I (p / C)


restriction_invariant_preserve_2

    I ⊆ C ⟹ is_invariant I (p / C) ⟹ is_invariant I p


corestriction_invariant_preserve

    is_invariant I p ⟹ is_invariant I (p C)


c_is_invariant

    is_invariant C (p C)


guarded_conditional_invariant_preserve

    is_invariant I p ⟹ is_invariant I q ⟹ is_invariant I (GC [(C, p), (D, q)])


if_then_else_invariant_preserve

    is_invariant I p ⟹ is_invariant I q ⟹ is_invariant I (ITE C p q)


fixed_repetition_invariant_preserve

     is_invariant I p ⟹ is_invariant I (pn)


arbitrary_repetition_invariant_preserve

    is_invariant I p ⟹ is_invariant I (loop p s f)


until_support_invariant_preserve

    0<s ⟹ is_invariant I a ⟹ is_invariant I b ⟹ is_invariant I (until_support a C b s f)


until_loop_invariant_preserve

    is_invariant I a ⟹ is_invariant I b ⟹ is_invariant I (until_loop a C b n)


inverse_is_not_invariant_preseving

    Pre p ⊆ I ⟹ is_invariant I p ⟹ is_invariant I (p -1)


true_is_invariant

    S p ⊆ C ⟹ is_invariant (TRUE C) p


invariant_exp

    is_invariant I b ⟹ x ∈ Pre b ⟹ (x,y) ∈ post b ⟹ x ∈ I ⟹ y ∈ I


invariant_preserve

    is_invariant I b ⟹ Range_p a ⊆ I ⟹ x ∈ Pre a ⟹ (x,y) ∈ post (a ; b) ⟹ y ∈ I


Loop_invariant.thy

false_is_loop_invariant

    is_loop_invariant FALSE a C b


true_is_loop_invariant

    S a ∪ S b ∪ C ⊆ D ⟹ is_loop_invariant (TRUE D) a C b


loop_invariant_is_invariant_of_loop

    0<s ⟹ is_loop_invariant I a C b ⟹ is_invariant I (loop (b/(-C)) s n)


loop_correct_1

    is_loop_invariant I a C b ⟹ Range_p (a ; loop (b / (- C)) n n) ⊆ I


loop_correct_2

    is_loop_invariant I a C b ⟹ Range_p (until_support a C b n n) ⊆ I


loop_correct_3

    s<f ⟹ is_loop_invariant I a C b ⟹ Range_p (until_support a C b s f) ⊆ I


loop_correct

    is_loop_invariant I a C b ⟹ Range_p (until_loop a C b n) ⊆ C ∩ I


is_invariant_is_preserved

    p q ⟹ is_invariant I p ⟹ is_invariant I q


is_loop_invariant_is_preserved

    a a’ ⟹ b b’ ⟹ is_loop_invariant I a C b ⟹ is_loop_invariant I a’ C b’


loop_inv_is_inv_for_a

    is_loop_invariant I a C b ⟹ is_invariant I a


Loop_inv_1

    is_loop_invariant I a C b ⟹ is_invariant I (b / (- C))


loop_inv_is_inv_of_loop

    is_loop_invariant I a C b ⟹ is_invariant I (loop (b/(-C)) 0 n)


Loop_invinv

    is_loop_invariant I a C b ⟹ is_invariant I (until_loop a C b n)